Automatic Triage of 12‐Lead ECGs Using Deep Convolutional Neural Networks

Published in Journal of the American Heart Association, 2020

Recommended citation: van de Leur RR, Blom LJ, Gavves E, Hof IE, van der Heijden JF, Clappers NC, Doevendans PA, Hassink RJ, van Es R. Automatic Triage of 12‐Lead ECGs Using Deep Convolutional Neural Networks. J Am Heart Assoc. 2020

Access paper here

BACKGROUND The correct interpretation of the ECG is pivotal for the accurate diagnosis of many cardiac abnormalities, and conventional computerized interpretation has not been able to reach physician‐level accuracy in detecting (acute) cardiac abnormalities. This study aims to develop and validate a deep neural network for comprehensive automated ECG triage in daily practice.

METHODS AND RESULTS We developed a 37‐layer convolutional residual deep neural network on a data set of free‐text physician‐annotated 12‐lead ECGs. The deep neural network was trained on a data set with 336.835 recordings from 142.040 patients and validated on an independent validation data set (n=984), annotated by a panel of 5 cardiologists electrophysiologists. The 12‐lead ECGs were acquired in all noncardiology departments of the University Medical Center Utrecht. The algorithm learned to classify these ECGs into the following 4 triage categories: normal, abnormal not acute, subacute, and acute. Discriminative performance is presented with overall and category‐specific concordance statistics, polytomous discrimination indexes, sensitivities, specificities, and positive and negative predictive values. The patients in the validation data set had a mean age of 60.4 years and 54.3% were men. The deep neural network showed excellent overall discrimination with an overall concordance statistic of 0.93 (95% CI, 0.92–0.95) and a polytomous discriminatory index of 0.83 (95% CI, 0.79–0.87).

CONCLUSIONS This study demonstrates that an end‐to‐end deep neural network can be accurately trained on unstructured free‐text physician annotations and used to consistently triage 12‐lead ECGs. When further fine‐tuned with other clinical outcomes and externally validated in clinical practice, the demonstrated deep learning–based ECG interpretation can potentially improve time to treatment and decrease healthcare burden.