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Preface and thesis outline

The electrocardiogram (ECG) is one of the most used diagnostic tools in 

clinical practice, with approximately 300 million ECGs obtained worldwide 

each year.1 The first recording of the heart’s electrical activity was docu-

mented around 1880. However, it was Willem Einthoven who invented the 

first practical method for conducting an ECG in 1901. 2 In the subsequent 

years, Einthoven established naming conventions for the different waves 

observed in an ECG (P, Q, R, S, and T waves) as well as leads (Einthoven 

I, II, and III). Furthermore, Einthoven outlined criteria for determining a nor-

mal ECG and identified some initial abnormalities such as pathological 

Q-waves, ventricular extrasystole, AV-block, abnormal heart axis, and left 

and right ventricular hypertrophy as early as 1912.3,4 By then, he also alrea-

dy realized there was much more to gain from this technology:

“The method of electrocardiography is still a young plant.

We may reasonably expect that it will continue to bear good fruit.”

Prof. dr. Willem Einthoven, Lancet (1912)

In the following decades, many novel electrophysiological abnormal-

ities were discovered using the ECG, from Wolff-Parkinson-White syn-

drome in 1930 to Brugada syndrome in 1992.5,6 In 1938, Frank Wilson de-

velops the Wilson Central Terminal, which allows for measurement of the 

precordial leads (V1-V6). These leads were used to improve the diagnosis 

of myocardial infarction, and together with the Einthoven and augmented 

Einthoven leads we arrived at the 12-lead ECG that is used today.7 

The 12-lead ECG became a fundamental tool in the everyday practice 

of clinical medicine, and its correct interpretation pivotal for a wide spec-

trum of cardiac abnormalities. Interpretation of the ECG is a complex task, 

that requires integration of knowledge on anatomy, (patho)physiology 

and electrophysiology with pattern recognition and the ability to quickly 

fixate the critical lead(s).8 This requires extensive training, and although 

accuracy of interpretation increases from 42% for medical students to 

75% for cardiologists, physicians at all training levels have deficiencies 

in ECG interpretation.9,10 Therefore, in pre-hospital care and non-cardiol-

ogy departments, expert knowledge to interpret ECGs might not always 

be readily available, and referral for such ECGs remains necessary. The 

life-threatening nature of a suspected acute coronary syndrome or ven-

tricular arrhythmia requires not only accurate, but also timely ECG inter-

pretation and this places a heavy logistic burden on clinical practice. More 

problematic is that even experts often do not agree on the interpretation 

of the ECG with each other, as well as their own previous interpretation of 

the same ECG.9,11,12

These deficiencies in the ECG interpretation, most notably the high 

inter- and intra-rater variability and logistical burden, instigated the intro-

duction of algorithms for the computerized interpretation of the ECG (CIE) 

around 1960.13 Significant progress was made in the development of ECG 

algorithms, but current versions have not been able to reach physician 

level accuracy in diagnosing cardiac abnormalities.14 Consensus is there-

fore that all computer-based reports should be systematically overread.14 

While this leads to a decreased analysis time for experienced readers 

and improved diagnostic abilities when the interpretation is correct, it 

increases probability of errors when the interpretation is erroneous.14,15 

One of early pioneers in the field of CIE therefore concluded in 1966 that 

“computerized ECG interpretation will elude us until the next generation 

of cardiologists”.12

Around the same time development in the field of CIE started, the 

term artificial intelligence (AI) emerged at a conference. AI refers to mim-

icking human intelligence in computers to perform tasks not explicitly pro-

grammed. The research field grew exponentially, and it was assumed that 

machines would soon become capable of doing anything a man can do. 

Around 1975 it turned out that early AI systems could not live up to the 

hype, and the first AI winter began. After a second unsuccessful AI ‘boom’, 

the field went into another AI winter around 2000. Due to access to large 

amounts of data, cheaper and faster computers, the third AI ‘boom’ start-

ed around 2010 and is currently probably reaching its peak. Research 



from the fields of image classification and speech recognition showed 

that one specific type of AI algorithm, called deep neural network (DNN), 

might be highly effective in the processing of raw data without the need 

for hand-crafted or rule-based feature engineering.16,17 DNNs are comput-

er algorithms based on the structure of the human brain and consist of 

layers of neurons that can be trained to discover complex patterns in im-

ages and signals using large datasets.18

Therefore, not one, but two generations later, developments in CIE 

and AI coincide and a substantial improvement of CIE is forthcoming. 

In 2018, at the start of this thesis project, Awni Hannun and colleagues 

were the first to robustly show that DNNs can learn a broad range of 

arrhythmias from the ECG with diagnostic performance similar to that of 

cardiologists.19 The ECG turned out to be an ideal substrate for develop-

ing deep learning-based AI algorithms, especially because large, labeled 

ECG datasets were readily available. Since 2018, our research group at 

the University Medical Center Utrecht and other groups have shown that 

DNNs can not only be applied to enhance automated diagnosis, but also 

to detect (asymptomatic) cardiovascular disease that might not be readily 

apparent, even to expert eyes.20,21 

In the present thesis, we first investigated opportunities and treats for 

artificial intelligence in electrocardiography in a narrative review (Chapter 

1) Next, we sought to develop a deep learning algorithm to optimize the 

diagnostic workflow on a large dataset with over 300.000 ECGs labelled 

by physicians. As we envisioned that the detailed ECG interpretation step 

would remain an expert task, we developed and validated an algorithm 

that could triage ECGs from normal to acute in Chapter 2. We showed 

that the algorithm performed excellently, but with this exciting progress 

challenges with implementing such algorithms in clinical practice became 

apparent. In the following chapters, we sought to address and find solu-

tions to some of these challenges. Firstly, on the path towards clinical ap-

plicable AI for the ECG, we performed an implementation study with the 

triage algorithm. We investigated whether implementation of the triage 

algorithm in the hospital setting is safe and efficacious when consider-

ing clinical outcomes in Chapter 3. Secondly, we proposed a method to 

quantify how ‘certain’ an algorithm is in its prediction in Chapter 4. This 

measure of certainty was then evaluated as a safeguard to determine 

which ECGs will be automatically analyzed. 

Next to the estimation of uncertainty, two other challenges with us-

ing deep neural networks arose: the lack of explainability and the need 

for very large datasets. Therefore, we designed and developed a novel 

method that leverages the power of DNN to interpret ECGs in an explain-

able manner. By training a variational auto-encoder on 1.1 million medi-

an beat ECGs, we were able to decompose the ECG morphology into 

32 explainable factors (the FactorECG). In Chapter 5, we demonstrated 

that this explainable method performs on par with ‘black box’ DNNs for 

conventional ECG interpretation, but also for novel applications such a 

detection of reduced ejection fraction. Moreover, in Chapter 6 we dis-

cussed why the FactorECG provides improved explainability over the 

heatmap-based methods used before.

Finally, as datasets with thousands of ECGs are not available for many 

clinically relevant questions, we evaluated the feasibility to transfer the 

knowledge that DNNs learned on big data to small data. In Chapter 7, 

we developed a deep learning algorithm to detect phospholamban (PLN) 

p.Arg14del variant carriers and used heatmaps to visualize which features 

were used by the algorithm. Afterwards, we applied our novel method, 

the FactorECG, to predict which PLN p.Arg14del variant carriers develop 

malignant ventricular arrhythmia (Chapter 8). We also applied the method 

in patients with dilated cardiomyopathy to predict ventricular arrhythmias 

(Chapter 9) and in patients that received cardiac resynchronization ther-

apy to predict response to treatment and mortality (Chapter 10). The find-

ings are discussed in Chapter 11.
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Abstract

The combination of big data and artificial intelligence (AI) has an increasing impact in the field 

of electrophysiology. Algorithms are created to improve the automated diagnosis of clinical 

electrocardiograms (ECGs) or ambulatory rhythm devices. Furthermore, the use of AI during 

invasive electrophysiological studies or combining several diagnostic modalities into AI algorithms 

to aid diagnostics, are being studied. However, the clinical performance and applicability 

of created algorithms are yet unknown. In this narrative review, opportunities and threats of 

AI in the field of electrophysiology are described, mainly focusing on ECG-based AI. Current 

opportunities are discussed with their potential clinical benefits and concomitant challenges. 

Challenges in data acquisition, model performance, (external) validity, clinical implementation, 

algorithm interpretation as well as the ethical aspects of AI-minded research are discussed. 

This review aims to guide clinicians in the evaluation of the many exciting new and upcoming AI 

applications in electrophysiology, prior to clinical implementation.

 

Introduction

Artificial intelligence (AI) and big data-minded clinical research may aid 

the prediction and/or detection of (subclinical) cardiovascular diseases 

by providing additional knowledge about disease onset, progression 

or outcome. Clinical decision making, disease diagnostics, risk predi-

ction or individualized therapy may be facilitated through new insights 

obtained from AI algorithms. As health records have become electro-

nic, data of large populations are becoming increasingly accessible.1 

Within electrophysiology, the use of AI algorithms may be of particular 

interest, as large datasets of electrocardiograms (ECG) are often rea-

dily available. Moreover, data are continuously generated by implan-

table devices (e.g. pacemakers, implantable cardioverter defibrillators 

or loop recorders) or smartphone- and smartwatch applications.2–6

Interpretation of ECGs relies on expert opinion and requires train-

ing and clinical expertise which is subjected to considerable inter- and 

intra-clinician variability.7–12 To facilitate clinical decision making, algo-

rithms for the computerized interpretation of ECGs have been devel-

oped. However, these algorithms lack accuracy and may provide inac-

curate diagnoses which may result in misdiagnosis when not reviewed 

carefully.13–18

Recently, substantial progress in the development of AI in electro-

physiology has been made, which was mainly directed at ECG-based 

deep neural networks (DNN). For example, DNNs have been tested to 

identify arrhythmias, to classify supraventricular tachycardias, to pre-

dict left ventricular ejection fraction, to identify disease development 

in serial ECG measurements, to predict left ventricular hypertrophy 

and to perform comprehensive triage of ECGs.6,19–23 DNNs are likely 

to aid non-cardiologists with improved ECG diagnostics and may pro-

vide the opportunity to expose yet undiscovered ECG characteristics 

indicating disease. 
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With this exciting progress, the challenges and threats of using 

AI techniques in clinical practice become apparent. In this narrative 

review, recent progress of AI in the field of electrophysiology is dis-

cussed together with opportunities and threats. 

Artificial intelligence:
A brief introduction

AI refers to mimicking human intelligence in computers to perform tasks 

not explicitly programmed. Machine learning (ML) is a branch of AI con-

cerned with algorithms to train a model to perform a task. Two types 

of ML algorithms are supervised learning and unsupervised learning. 

Supervised learning refers to ML algorithms where input data are la-

belled with the outcome and the algorithm is trained to approximate 

the relation between input data and outcome. In unsupervised learning, 

input data are not labelled and the algorithm may discover data clusters 

in the input data. 

In ML, an algorithm is trained to classify a dataset based on several 

statistical and probability analyses. In the training phase, model parame-

ters are iteratively tuned by penalizing or rewarding the algorithm based 

on a true or false prediction. Deep learning is a sub-category of ML that 

uses neural networks as architecture to represent and learn data which 

are referred to as DNNs. The main difference between deep learning 

and other ML algorithms is that DNNs can learn from raw data (i.e. ECG 

waveforms) in an end-to-end manner; both feature extraction and clas-

sification are united in the algorithm (Figure 1a). For example, in ECG-

based DNNs a matrix containing the time-stamped raw voltage values 

of each lead are used as input data. In other ML algorithms, features like 

heart rate or QRS duration are first (manually) extracted from the ECG 

and used as input data for the classification algorithm.

To influence the speed and quality of the training phase, the set-

ting of hyperparameters (e.g. the settings of the model architecture and 

training) is important. Furthermore, overfitting or underfitting the model 

to the available dataset must be prevented. Overfitting can occur when 

a complex model is trained using a small dataset. Then the model pre-

cisely describes the training dataset but fails to predict the outcome 

using other data (Figure 1b). On the other hand, when constraining the 
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model too much, underfitting occurs (Figure 1b), also resulting in poor 

algorithm performance. To assess overfitting, a dataset is usually divid-

ed into a training dataset, a validation dataset and a test dataset or res-

ampling methods are used, such as cross-validation or bootstrapping.24

To train and test ML algorithms, and in particular DNNs, preferably 

a large dataset (big data) is used. Performance of highly dimensional 

algorithms (e.g. algorithms with many model parameters), like DNNs, de-

pends on the size of the dataset. For deep learning, more data is often 

required as DNNs have many non-linear parameters and non-linearity 

increases the flexibility of an algorithm. The size of a training dataset 

has to reasonably approximate the relation between input data and out-

come and the amount of testing data has to reasonably approximate 

the performance measures of the DNN. Determining the exact size of a 

training and testing dataset is difficult.25,26 It depends on the complexity 

of the algorithm (e.g. the number of variables), the type of the algorithm, 

the number of outcome classes and the difficulty to distinguish between 

outcome classes as inter-class differences might be subtle. Therefore, 

size of the dataset should be carefully reviewed per algorithm. A rule of 

thumb for the adequate size of a validation dataset is between 50-100 

patients per outcome class to determine overfitting. Recent studies pub-

lished in the field of ECG-based DNNs used between 50 thousand and 

1.2 million patients; these numbers illustrate the amount of data used for 

this type of analyses.6,19,21,27

Figure 1.
A: traditional 

machine learning 
and deep learning 
and B: schematic 

representation fitting 
a model to a dataset. 

Traditional machine learning

Features:

Deep learning

A

B
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• Class 2
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Manual feature extraction
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Prerequisites for AI 
in electrophysiology 

Preferably, data used to create AI algorithms is objective, as subjectivity 

may introduce bias in the algorithm. To ensure clinical applicability of cre-

ated algorithms, ease of access to input data and difference in data quali-

ty in different clinical settings and intended use of the algorithm should be 

considered. In this section, we mainly focus on the data quality of ECGs, 

as these data are easily acquired, and large datasets are readily available. 

Technical specifications of ECGs
The ECG is obtained via electrodes on the body surface using an ECG 

device. The device samples the continuous body surface potentials and 

the recorded signals are filtered to obtain a clinically interpretable ECG.28 

As the diagnostic information of the ECG is contained below 100 Hz, a 

sampling rate of at least 200 Hz is required according to the Nyquist the-

orem.29–33 Furthermore, an adequate resolution of at least 10µV is recom-

mended to also obtain small amplitude fluctuations of the ECG signal. 

In the recorded signal, muscle activity, baseline wander, motion artefacts 

and powerline artefacts are also present, distorting the measured ECG. 

To remove noise and obtain an easily interpretable ECG, a combination 

of a high-pass filter of 0.67 Hz and a low-pass filter of 150-250 Hz is re-

commended, often combined with a notch filter of 50 Hz or 60 Hz. The 

inadequate setting of these filters might result in a loss of information such 

as QRS fragmentation or notching, slurring or distortion of the ST seg-

ment. Furthermore, a loss of QRS amplitude of the recorded signal might 

be the result of the inappropriate combination of a high-frequency cutoff 

and sampling frequency.28,34 ECGs used as input for DNNs are often alre-

ady filtered, thus potentially relevant information might already be lost. As 

DNNs process and interpret the input data differently; filtering might be 

unnecessary and potentially relevant information may be preserved. Fur-

thermore, as filtering strategies differ between manufacturers and even 

different versions of ECG devices, the performance of DNNs might be 

affected when ECGs from different ECG devices are used as input data. 

Apart from applied software settings like sampling frequency or filter 

settings, the hardware of ECG devices also differs between manufactur-

ers. Differences in analogue to digital converters, type of electrodes used, 

or amplifiers also affect recorded ECGs. The effect of input data recorded 

using different ECG devices on the performance of AI algorithms is yet 

unknown. However, as acquisition methods may differ significantly be-

tween manufacturers, the performance of algorithms are likely to depend 

on the type or even version of the device.35 Testing the performance of al-

gorithms using ECGs recorded by different devices would illustrate the ef-

fect of these technical specifications on performance and generalizability. 

Figure 2.
The effect of shifting 

precordial electrodes 
4 cm upward (blue) 
or downward (red) 

from standard 
12-lead electrode 

positioning (black). 
Displayed signals 

were simultaneously 
recorded using 
a 64-electrode 

measurement setup. 
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ECG electrodes
The recorded ECG is affected by electrode position with respect to the 

anatomical position of the heart and displacement of electrodes may re-

sult in misdiagnosis in a clinical setting.36,37 For example, placement of limb 

electrodes on the trunk significantly affects the signal waveforms and lead 

reversal may mimic pathological conditions.38–41 Furthermore, deviations in 

precordial electrode positions affect QRS and T-wave morphology (Figu-

re 2). Besides the effect of cardiac electrophysiological characteristics like 

anisotropy, His-Purkinje anatomy, myocardial disease and cardiac anatomy 

on measured ECGs, cardiac position and cardiac movement also affect the 

ECG.42–45 

Conventional clinical ECGs mostly consist of the measurement of eight 

independent signals; two limb leads and six precordial leads (Figure 3b). 

The remaining four limb leads are derived from the measured limb leads. 

However, body surface mapping studies identified the number of signals 

containing unique information up to twelve for ventricular depolarization 

and up to ten for ventricular repolarization.46 Theoretically, to measure all 

information about cardiac activity from the body surface, the number of 

electrodes should be at least the number of all unique measurements. 

However, conventional 12-lead ECG is widely accepted for most clinical 

applications. Only when a posterior or right ventricle myocardial infarction 

or Brugada syndrome is suspected an adjustment of a lead position is con-

sidered.27,47–50

The interpretation of ECGs through computers and humans is funda-

mentally different and factors like electrode positioning or lead misplace-

ment might influence algorithms. However, the effect of electrode mis-

placement or reversal, disease-specific electrode positions or knowledge 

of lead positioning on the performance on DNNs remains yet to be identi-

fied. A recent study was able to identify misplaced chest electrodes, imply-

ing that the effect of electrode misplacement might be identified and taken 

into account by algorithms.51 Interestingly, studies suggested that DNNs can 

achieve similar performance when fewer leads are used.50 

ECG input data format
ECGs can be obtained from the electronic database in three formats; as 

visualized signals (as used in standard clinical practice), as raw ECG signals 

or as median beats. To be used as input for DNNs, preferably, ECG signals 

consist of raw signals as visualized signals require digitization, consequent-

ly resulting in loss of signal resolution. Furthermore, raw ECG signals often 

consist of a continuous 10-second measurement of all recorded leads, 

whereas visualized signals may consist of 2.5 seconds per lead with only 

three simultaneously recorded signals per 2.5 seconds (Figure 3). A me-

dian beat per lead can also be used, computed from measured raw ECG 

signals or digitized visualized signals. Using the median beat might reduce 

noise, as noise is expected to cancel out by averaging all beats. Therefore, 

subtle changes in cardiac activation, invisible due to noise might become 

distinguishable for the algorithm.  The use of the median beat may allow 

for precise analysis of waveform shapes or serial changes between indivi-

duals, but rhythm information is lost. 

Median beat10-second measurement

Time (s) Time (s) 

A

B

I

II

V1

V2

V3

V4

V5

V6

I

II

V1

V2

V3

V4

V5

V6

0 02 0.5 14 6 8 10

1 mV1 mV

Figure 3.  
Standardized 

clinical visualized 
signals (A) with 

three simultaneously 
recorded 2.5-seconds 

measurements 
and raw signals 

(B) containing a10-
second measurement 
and median beats of 

all recorded leads. 
Displayed signals 

are acquired using 
a General Electric 

Healthcare MAC5500 
ECG device. 
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Opportunities for artificial 
intelligence in electrophysiology

Enhanced automated ECG diagnosis
An important opportunity of AI in electrophysiology is the enhanced au-

tomated diagnosis of clinical 12-lead ECGs.8,11,12,20,52–54 Adequate comput-

erized algorithms are especially important when expert knowledge is not 

readily available, like in prehospital care, non-cardiology departments, 

or low-resource facilities. If high-risk patients can be identified correct-

ly, time-to-treatment can be reduced. However, currently available com-

puterized ECG diagnosis algorithms lack accuracy.11 Recently, progress 

has been made to use DNNs to automate diagnosis or triage of ECGs to 

improve time-to-treatment and decrease workload.19,55 Using very large 

datasets, DNNs can achieve high diagnostic performance and outper-

form cardiology residents and non-cardiologists.6,19 Moreover, progress 

has been made to use ECG data for predictive modeling such as atrial 

fibrillation in sinus rhythm ECGs or for the screening of hypertrophic car-

diomyopathy.56–58 

Combining other diagnostic modalities
with ECG-based DNN 
Interestingly, some studies suggest the possibility to use ECG-based 

DNNs combined with other diagnostic modalities to screen for disorders 

that are currently not associated with the ECG. In these applications, 

DNNs are thought to be able to detect subtle ECG changes. For example, 

when combined with large laboratory datasets patients with hyperkale-

mia could be identified, or when combined with echocardiographic resul-

ts, reduced ejection fraction or aortic stenosis could be identified. In these 

three applications, the created DNNs identified these disorders from the 

ECG with high accuracy.21,50,59 As a next step, supplementing ECG-based 

DNNs with body surface mapping data with a high spatial resolution (e.g. 

more than 12 measurement electrodes), inverse electrocardiography data 

or invasive electrophysiological mapping data, may result in the identifica-

tion of subtle changes in the 12-lead ECG as a result of pathology. 

Artificial intelligence for invasive electrophysiologi-
cal studies
The application of AI before and during complex invasive electrophysio-

logical procedures, like electro-anatomical mapping, is another major op-

portunity. By combining information from  several diagnostic  tools  like 

magnetic resonance imaging (MRI), fluoroscopy or previous electro-ana-

tomical mapping procedures, invasive catheter ablation procedure time 

might be reduced through the accelerated identification of arrhythmoge-

nic substrates. Also, new techniques such as ripple mapping may be of 

benefit during electro-anatomical mapping studies.60 Recent studies sug-

gest that integration of fluoroscopy and electro-anatomical mapping with 

MRI is feasible using conventional statistical techniques or ML, whereas 

others suggest the use of novel anatomical mapping systems to circu-

mvent fluoroscopy.61–64 Furthermore, several ML algorithms were able to 

identify myocardial tissue properties using electrograms in vitro.65

Ambulatory device-based screening for cardiova-
scular diseases 
One of the major current challenges in electrophysiology is the applicabi-

lity of ambulatory rhythm devices into clinical practice. Several tools, such 

as implantable devices or smartwatch and smartphone-based devices, 

are becoming more widely used and continuously generate large amoun-

ts of data impossible for manual evaluation.66  Arrhythmia detection algori-

thms based on DNNs trained on large cohorts of ambulatory patients with 

a single-lead plethysmography or ECG device have shown similar dia-

gnostic performance as cardiologists or implantable loop recorders.2,3,6 

Another interesting application of DNNs algorithms are data from intra-

cardiac electrograms before and during the activation of the defibrillator. 

Analysis of the signals before the adverse event might provide insight 

into the mechanism of the ventricular arrhythmia, providing the clinician 

with valuable insights. Continuous monitoring also provides the possibi-

lity to identify asymptomatic cardiac arrhythmias or detect complications 
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post-surgery. Early detection of both might overcome serious adverse 

events and significantly improve fast and personalized healthcare.6,19

A promising benefit of smartphone-based applications for the early 

detection of cardiovascular disease is in early detection of atrial fibrillation 

(AF). As AF is a risk factor for stroke, early detection to prompt adequate 

(anticoagulant) treatment may be of importance.67–69 Using smartphone or 

smartwatch acquired ECGs, an irregular rhythm can be accurately detect-

ed.  Even the prediction whether a patient will develop AF in the future 

using smartphone acquired ECGs recorded during sinus rhythm has been 

recently reported.69,70Also, camera-based photoplethysmography record-

ings can be used to differentiate between irregular and regular cardiac 

rhythm.71,72 However, under-detection of asymptomatic AF is expected 

as the use of applications requires active use and individuals are like-

ly to only use applications in case of complaints. Therefore, a non-con-

tact method with facial photoplethysmography recordings during regular 

smartphone use may be an interesting option to explore.70,73,74

Apart from the detection of (asymptomatic) AF, the prediction or early 

detection of ventricular arrhythmias using smartphone-based techniques 

are potentially clinically relevant. For example, smartphone-based mon-

itoring of individuals with a known pathogenetic mutation might aid the 

early detection of disease onset. In some pathogenetic mutations, this 

may be especially relevant as sudden cardiac death can be the first man-

ifestation of the disease. In these patients, close monitoring to prevent 

these adverse events by starting early treatment when subclinical signs 

are detected may provide clinical benefit.

Threats of artificial intelligence 
in electrophysiology

Data-driven versus hypothesis-driven research
Data from the electronic health records are almost always retrospecti-

vely collected, leading to data-driven research, instead of hypothesis-dri-

ven research. Research questions are often formulated based on readily 

available data, which increases the possibility of incidental findings and 

spurious correlations. While correlation might be sufficient for some pre-

dictive algorithms, causal relationships remain utmost important to define 

pathophysiological relationships and ultimately for the clinical implemen-

tation of AI algorithms. Therefore, big data research is argued to be in 

most cases solely used for hypothesis-generation and controlled clinical 

trials remain necessary to validate these hypotheses. When AI is used to 

identify novel pathophysiologic phenotypes (e.g. with specific ECG featu-

res), sequential prospective studies and clinical trials are crucial.75

Input data
For supervised learning, adequate labelling of input data is important.18,76,77 

Inadequate labelling of ECGs or the presence of for example pacema-

ker artefacts, comorbidities affecting the ECG or medication affecting the 

rhythm or conduction might influence the performance of DNNs.13–18 Inste-

ad of true disease characteristics, ECG changes due to clinical interven-

tions are used by the DNN to classify ECGs. For example, a DNN using 

chest X-rays provided insight into long-term mortality78 but the presence 

of a thoracic drain and inadequate labelled input data resulted in an al-

gorithm unsuitable for clinical decision making.77–80 Therefore, the critical 

review of computerized labels and the identification of important features 

used by the DNN are essential.

Data extracted from ambulatory devices consist of real-time con-

tinuous monitoring data outside the hospital. As the signal acquisition 

is performed outside a standardized environment, signals are prone to 
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errors. ECGs are more often exposed to noise due to motion artefacts, 

muscle activity artefacts, loosening or moved electrodes and alternating 

powerline artefacts. To accurately assess ambulatory data without the in-

terference of artefacts, signals should be denoised or a quality control 

mechanism should be implemented. For both methods, noise should be 

accurately identified, after which adaptive filtering or noise qualification 

can be implemented.81–83 However, as filtering might remove information, 

rapid real-time quality reporting of the presence of noise in the acquired 

signal is thought to be beneficial. With concise instructions, users can 

make adjustments to reduce artefacts and the quality of the recording 

will improve. Different analysis requires different data quality levels and 

through classification recorded data quality, the threshold for user notifi-

cation can be adjusted per analysis.84,85  

Generalizability and clinical implementation
With the increasing number of studies on ML algorithms, generalizability 

and implementation is one of the most important challenges to overco-

me. Diagnostic or prognostic prediction model research, from simple lo-

gistic regression to highly sophisticated DNNs, is characterized by three 

phases: 1) development and internal validation, 2) external validation and 

updating for other patients and 3) assessment of implementation of the 

model in clinical practice and its impact on patient outcomes.86,87 During 

internal validation, the predictive performance of the model is assessed 

using the development dataset through train-test splitting, cross-valida-

tion or bootstrapping. Internal validation is however insufficient to test 

generalizability of the model in ‘similar but different’ individuals. Therefo-

re, external validation of established models is important before clinical 

implementation. A model can be externally validated through temporal 

(same institution, later period), geographical (another institution with a si-

milar patient group) or domain (different patient group) validation. Finally, 

implementation studies, such as cluster randomized trials, before-after 

studies or decision-analytic modelling studies, are required to assess the 

effect of implementing the model in clinical care.86,87

Most studies in automated ECG prediction and diagnosis performed 

some type of external validation. However, no study using external vali-

dation in a different patient group or implementation study has been pub-

lished so far.52 Recently, a study showed similar accuracy to predict low 

ejection fraction from the ECG using a DNN through temporal validation 

as in the development study.88 A promising finding was a similar perfor-

mance of the algorithm for different ethnic subgroups, even if the algori-

thm was trained on one subgroup.89 As a final step to validate this algo-

rithm, a cluster-randomized trial is currently being performed. This might 

provide valuable insight into the clinical usefulness ECG-based DNNs.90

Implementation studies for algorithms using ambulatory plethysmog-

raphy and ECG data are ongoing. For example, the Apple Heart Study 

assessed the implementation of smartphone-based atrial fibrillation de-

tection.5 Over 400.000 patients were included using a mobile applica-

tion, but only 450 patients were analyzed. Implementation was proven 

feasible as the number of false alarms was low, but the study lacks in-

sight into the effect of smartphone-based atrial fibrillation detection on 

patient outcome. Currently, the HEARTLINE trial is performed and patients 

are randomized to use the smartwatch monitoring device. The need for 

treatment with anticoagulation of patients with device-detected subclini-

cal AF is also being investigated.4 

A final step for the successful clinical implementation of AI is to in-

form its users about adequate use of the algorithm. Standardized “Model 

Facts” leaflets have been proposed to instruct clinicians when, and more 

importantly when not, to use an algorithm.91 This is particularly important 

if an algorithm is trained on a cohort using a specific subgroup of pa-

tients. Then, applying the model to a different population may potentially 

result in misdiagnosis. Therefore, describing the predictive performance 

in different (sub)groups (such as different age, sex, ethnicity and disease 

stage) is of utmost importance as AI algorithms are able to identify these 

by themselves.89,92–94 However, as most ML algorithms are still considered 

to be ‘black boxes’, algorithm bias might remain difficult to detect.  

Interpretability
Many sophisticated ML methods are considered ‘black boxes’ as they 

have many model parameters and abstractions. This is in contrast with 

the more conventional statistical methods used in medical research, like 
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logistic regression and decision trees, where the influence of a predictor 

on the outcome is clear. The trade of complexity of models and interpret-

ability for improved accuracy is important to acknowledge; with increased 

complexity of the network, interpretation becomes more complicated. 

But interpretability remains important to investigate false positives and 

negatives, to detect biased or overfitted models, to improve trust in new 

models or to use the algorithms as a feature detector.95 Within electro-

physiology, few studies  investigated  how the  AI  algorithms came to a 

certain result. For DNNs, three recent studies visualized individual exam-

ples using Guided Grad-CAM, a technique to show where the networks 

focus on. They showed that the DNN used the same segment of the ECG 

as a physician would (Figure 4).19,27,96–98  

Visualization techniques may provide the ECG locations which the al-

gorithms find important, but do not provide the specific feature. Therefore, 

the opportunity to identify additional ECG features remains dependent on 

expert opinion and analysis of the data by a clinician remains required. 

Visualization techniques and their results are promising and help  to in-

crease trust in DNNs for ECG analysis, but additional work is needed to 

further improve the interpretability of AI algorithms in clinical practice.99,100 

Uncertainty estimation
In contrast to physicians or conventional statistical methods, DNNs strug-

gle to inform their users when they don’t know, i.e. to give uncertainty 

measures around their predictions. Current models always output a di-

agnosis or prediction, even if they have not seen the input before. In a 

real-world setting, clinicians acknowledge uncertainty and consult col-

leagues or literature, a DNN always makes a prediction. Therefore, meth-

ods that incorporate uncertainty are essential before implementation of 

such algorithms is possible.101 

Ideally, the algorithm provides only results when it reaches a high 

threshold of certainty, while the uncertain cases will still be reviewed by 

a clinician.101 For DNNs, several new techniques are available to obtain 

uncertainty measures, such as Bayesian deep learning, Monte Carlo 

dropout and ensemble learning, but these have never been applied in 

electrophysiologic research.102 They have been applied to detect diabetic 

Figure 4.
ECG leads II and V1 

with a superimposed 
guided Grad-CAM 

visualization showing 
regions important for 

the DNN to predict 
whether an ECG is 
normal, abnormal 

or acute.
A and B: Normal ECGs 

with focus on the P- 
wave, QRS- complex, 

and T- wave, while 
correctly ignoring a 

premature ventricular 
complex. C: Abnormal 

ECG with a long QT 
interval and a focus on 
the beginning and end 

of the QT- segment. 
D and E: Acute ECGs 

with an inferior ST- 
segment–elevation 

myocardial infarction 
(D) and a focus on 

the ST- segment with 
a junctional escape 

rhythm (E) and a 
focus on the pre-QRS- 

segment, where the 
P-wave is missing. 

Adopted from JAHA 
with permission 19. 
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retinopathy in fundus images using DNNs, where one study showed that 

overall accuracy could be improved when uncertain cases were refer-

red to a physician.103 Another study suggested that uncertainty measures 

were able to detect when a different type of scanner was used that the 

algorithm had not seen before.35 Moreover, combining uncertainty with 

active or online learning, allows the network to learn from previously un-

certain cases, which are now reviewed by an expert.104

Ethical aspects
Several other ethical and legal challenges within the field of AI in heal-

thcare are yet identified, like patient privacy, poor quality algorithms, al-

gorithm transparency and liability concerns. Used data are subjected to 

privacy protections, confidentiality and data ownership, therefore requi-

ring specific individual consent for use and reuse of data. However, with 

increasing the size of the dataset, anonymization techniques used nowa-

days might be inadequate and eventually result in the (de-)identification 

of patients.105,106 Furthermore, as large datasets are required for DNNs, 

collaboration between institutions becomes inevitable. To facilitate data 

exchange, platforms have been established to allow for save and consi-

stent data-sharing between institutions.107 However, these databases may 

still contain sensitive personal data.54,108 Therefore, federated learning ar-

chitectures are proposed to provide data sharing while simultaneously 

obviating the need to share sensitive personal data (for example: andre-

a-consortium.org). 

Another concerning privacy aspect is the continuous data acquisition 

through smartphone-based applications. In these commercial applica-

tions, data ownership and security are vulnerable aspects. Security be-

tween smartphones and applications is heterogeneous and data may be 

stored on commercial and poorly secured servers. Clear regulations and 

policies should be in place before these applications can enter the clinical 

arena.   

Datasets contain information about medical history and treatment but 

may also encompass demographics, religious status or socioeconomic 

status. Apart from medical information, sensitive personal data might be 

taken into account by developed algorithms, possibly resulting in discrim-

ination in for example ethnicity, gender or religion.54,108–110 

As described, DNNs are ‘black boxes’ wherein input data is classified. 

Through the interpretation of DNNs and the incorporation of uncertainty 

measures, an estimate of the competency of an algorithm can be made. 

Traditionally, clinical practice mainly depends on the competency of a cli-

nician. Decisions about diagnoses and treatments are based on wide-

ly-accepted clinical standards and the level of competency is protected 

by continuous intensive medical training. In the case of adverse events, 

clinicians are held responsible if they deviated from standard clinical care. 

However, the medical liability of the designed networks remains ques-

tionable. Incorrect computerized medical diagnoses or treatments result 

in adverse outcomes, thereby raising the question: who is accountable for 

mis diagnosis based on AI algorithms. 

To guide the evaluation of ML algorithms, in particular DNNs, and ac-

companying literature in electrophysiology, a systematic overview of all 

relevant threats discussed in this review is presented in Table 1.   
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KEY POINTS

Subjects

Robustness

Subjects

Data

Overfitting
and optimism

Data

Implementation
studies

External
validation

Subgroups

IN
PU

T
IM

PL
EM

EN
TA

TI
O

N
PE

RF
O

RM
AN
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QUESTIONS

Is an appropriate data source used with clean in- and 
exclusion criteria?

How does the model perform?
Was there a reasonable number of subjects?
Were ECGs equally sampled per subject

Is the population to use the algorithm similar to the (exter-
nal) validation population?
Is the disease prevalence similar?

Is an appropriate data source used with clean in- and 
exclusion criteria?

Was overfitting assessed using internal validation with 
train-test splitting, cross-validation or bootstrapping?
Was the validation dataset of sufficient size (>100 
participants with the outcome)?

Is the algorithm evaluated on the used diagnostic 
device of a specific manufacturer?
Was data standardized according to general 
agreements?

Are there implementation studies (such as RCTs or before-
after studies) performed?
Does implementation of the model positively influence 
patient outcomes?

Are there external validation studies in different temporal, 
geographical or domain patient groups?

Is subgroup analysis provided to minimize the risk of poor 
performance in subgroups?
Is bias based on ethnicity, gender or other demographic 
factors present?

Interpretation
and uncertainty

Etichal
and legal

IM
PL

EM
EN

TA
TI

O
N

Are there possibilities to check the 
predictions of the model in clinical 
practice (using visualizations)?
Does the model provide uncertain-
ty measures?
How does the model deal with 
ECG noise or electrode misplace-
ments?
Is there a clear flowchart to refer 
specific uncertain cases to a 
physician?

Are the ethical and legal aspects 
sufficiently addressed?

Table 1.
Systematic overview 

of relevant threats 
of AI algorithms in 
electrophysiology. 

Adapted from 111. 
Abbreviations: RCT = 

randomized 
controlled trial.
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Conclusion 

Many exciting opportunities arise when AI is applied to medical data, 

especially in cardiology and electrophysiology. Using AI technology, new 

ECG features, accurate automatic ECG diagnostics and new clinical insi-

ghts can be rapidly obtained. In the near future, AI is likely to become one 

of the most valuable assets in clinical practice. However, as with every 

technique, AI has its limitations, also within the field of electrophysiology. 

To ensure the correct use of AI in a clinical setting, every clinician working 

with AI should be able to recognize the threats, limitations and challenges 

of the technique. Furthermore, during the creation of AI algorithms clini-

cians and data scientists should closely collaborate to ensure the creation 

of a clinically applicable and useful algorithm.  
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Background
The correct interpretation of the electrocardiogram (ECG) is pivotal for accurate diagnosis of 

many cardiac abnormalities and conventional computerized interpretation has not been able to 

reach physician level accuracy in detecting (acute) cardiac abnormalities yet. This study aims to 

develop and validate a deep neural network (DNN) for comprehensive automated ECG triage in 

daily practice.

Methods and results
We developed a 37-layer convolutional residual DNN on a dataset of free text physician-annotated 

12-lead electrocardiograms. The DNN was trained on a dataset with 336.835 recordings from 

142.040 patients and validated on an independent validation dataset (n = 984), annotated 

by a panel of five cardiologists-electrophysiologists. The 12-lead ECGs were acquired on all 

non-cardiology departments of the University Medical Center Utrecht. The algorithm learned 

to classify these ECGs into four triage categories: normal, abnormal not acute, subacute and 

acute. Discriminative performance is presented with overall and category-specific c-statistics, 

polytomous discrimination indexes (PDI), sensitivities, specificities, positive and negative 

predictive values. The patients in the validation dataset had a mean age of 60.4 years and 54.3% 

were male. The DNN showed excellent overall discrimination with an overall c-statistic of 0.93 

(95% CI 0.92 – 0.95) and PDI of 0.83 (95% CI 0.79 – 0.87).

Conclusions
This study demonstrates that an end-to-end DNN can accurately be trained on unstructured free 

text physician annotations and used to consistently triage 12-lead electrocardiograms. When 

further finetuned with other clinical outcomes and externally validated in clinical practice, the 

demonstrated deep learning-based ECG interpretation can potentially improve time-to-treatment 

and decrease healthcare burden. 

Abstract

With more than 300 million ECGs obtained annually worldwide, the 

electrocardiogram (ECG) is a fundamental tool in the everyday practice of 

clinical medicine.1 The correct interpretation of the ECG is pivotal for accu-

rate diagnosis of a wide spectrum of cardiac abnormalities and requires 

the expertise of an experienced cardiologist. The life-threatening nature 

of a suspected acute coronary syndrome and ventricular arrhythmias re-

quires not only accurate, but also timely ECG interpretation and places a 

heavy logistic burden on clinical practice.

Automated triage of ECGs in categories that need acute, non-acute or 

no attention may therefore be of great support in daily practice. Accura-

tely prioritizing different ECGs could lead to improvements in time-to-tre-

atment and possibly decrease healthcare costs.2 Especially in pre-hospi-

tal care and non-cardiology departments, expert knowledge to interpret 

ECGs might not always be readily available.3–5 However, a consistent and 

fast automated algorithm that supports the physician in comprehensive 

triage of the ECG remains lacking.

Computerized interpretation of the ECG (CIE) was introduced over 

50 years ago and became increasingly important in aiding the physician 

interpretation in many clinical settings. However, current CIE algorithms 

have not been able to reach physician level accuracy in diagnosing car-

diac abnormalities.5 Accurate interpretation of arrythmias and ST-segment 

abnormalities remains the most problematic and many algorithms suffer 

from high amounts of false positives for these disorders.4–9 Overdiagnosis 

and failure to correct the erroneous interpretation by overreading phy-

sician has shown to lead to unnecessary interventions and medication 

use.10,11

With the development of algorithms that can benefit from large-sca-

le processing of raw data without the need for hand-crafted feature ex-

traction, a substantial improvement of CIE is forthcoming. Several of these 

Introduction
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techniques, deep neural networks (DNN) in particular, have shown to be 

highly effective in similar applications as speech recognition and image 

classification.12–14 DNNs are computer algorithms based on the structure 

and function of the human brain. Their hidden layers of neurons can be 

trained to discover complex patterns in signals such as the ECG.15 In com-

parison to conventional CIE algorithms, DNNs have the advantage that 

they jointly optimize both pattern discovery and classification in an end-

to-end approach that only needs the raw waveforms as input. In medici-

ne, deep learning showed promising results when applied to arrhythmia 

detection in single lead ECG recordings and to early detection of atrial fi-

brillation in normal sinus rhythm ECGs.16,17 When combined with ultrasound 

or laboratory findings, deep learning algorithms were able to detect redu-

ced ejection fraction and hyperkalemia in 12-lead ECGs.18,19

This study aims to develop and validate a DNN for comprehensive 

automated ECG triage that could support daily clinical practice.
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Methods

Study participants
The dataset contained all 12-lead ECGs from patients between 18 and 85 

years old recorded in the University Medical Center Utrecht from January 

2000 to August 2019, obtained at non-cardiology departments.  All ex-

tracted data were de-identified in accordance with the EU General Data 

Protection Regulation and written informed consent was therefore not re-

quired by the UMC Utrecht ethical committee.

Training data acquisition and annotation
All ECGs were recorded on a General Electric MAC 5500 (GE Healthcare, 

Chicago, IL, United States). We extracted raw 10 second 12-lead ECG data 

waveforms from the MUSE ECG system (MUSE version 8, GE Healthcare, 

Chicago, IL, United States). All recordings in the UMC Utrecht acquired 

in non-cardiology departments were systematically annotated by a phy-

sician as part of the regular clinical workflow. These physicians were all 

trained to interpret and annotate an ECG as part of their cardiology resi-

dency. During the annotation, the physicians had access to the name, sex 

and age of the patient, the computer-calculated conduction intervals, the 

previous ECG recordings and the full patients records. The ECGs were 

divided into 4 triage categories, based on how quickly a cardiologist has 

to be consulted: [1] normal, [2] not acute abnormal (consultation with low 

priority), [3] subacute abnormal (consultation with moderate priority) and 

[4] acute abnormal (consultation with high priority). 

The free-text physician ECG annotations were labelled into one of 

the four triage categories using a text mining-based approach. Firstly, the 

annotations were tokenized and all frequent (i.e. occurring more than 20 

times) terms and multi-word collocations were extracted. These terms, 

such as “STEMI”, and collocations, such as “first degree AV-block” and 

“1st degree AV block”, contained multiple variations of diagnostic ECG 

statements. Therefore, they were mapped to the standardized statemen-

ts of the “American Heart Association’s Electrocardiography Diagnostic 

Statement List”.20 Secondly, a panel of three electrophysiologists defined 

the triage category for every standardized diagnostic statement. The 

used diagnostic statements and their corresponding triage category are 

appreciated in Figure 1. Thirdly, a final triage category was assigned to 

every ECG. When multiple statements were given, the final triage cate-

gory was the maximum category. All text mining step were performed 

with the quanteda package for R (version 3.5, R Foundation for Statistical 

Computing, Vienna, Austria). 21 An overview of the text mining steps can 

be found in Figure 2. 

Sinus rhythm
Sinus arrhythmia
Atrial ectopic beat
Ventricular ectopic 
beat

First degree AV block

Sinus tachycardia 
> (220 - age)/min

Sinus bradycardia 
< 50/min

Ectopic atrial rhythm
Atrial fibrillation
< 100/min

Paced rhythm

Intraventricular con-
duction delay
Right bundle branch 
block
Left bundle branch 
block
Other blocks

History of transmural 
infarction �pathological 
Q-waves�
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Left ventricular hyper-
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Normal
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Consultation of cardiologist

No

< 24 hours
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Immediately

Figure 1.
ECG diagnoses with 
their corresponding 

triage category.
Triage categories 

as defined by 
the panel of 

electrophysiologists, 
with [1] normal, [2] 

not acute abnormal 
(consultation without 
priority), [3] subacute 

abnormal (consultation 
with some priority) 

and [4] acute abnormal 
(consult immediately). 

The ECG diagnoses 
derived from the text 

mining algorithm were 
used to categorize 

the training data 
using these rules. 

When multiple 
diagnoses were 

given, the final triage 
category was the 

maximum category. 
AV: atrioventricular. 

AVNRT: 
atrioventricular nodal 

reentrant tachycardia, 
AVRT: atrioventricular 
reentrant tachycardia.
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Validation data annotation
For the validation of the DNN, a dataset with higher annotation reliabi-

lity was required. Therefore, an independent dataset was annotated 

and triaged by the reference standard, a panel of five practicing senior 

electrophysiologists or cardiologists. All records were annotated by two 

independent annotators, who were blinded to the other annotation. In 

case of disagreement in the triage category, a third annotator was consul-

ted, and the majority vote was used as the final label. The recordings with 

three discordant votes were discussed in a joint panel meeting and re-

cordings of insufficient quality were excluded. Annotation was performed 

using an online tool, where the expert had access to the 12-lead ECG, 

computer-calculated conduction intervals and the age and sex of the pa-

tient. The experts were instructed to classify the ECGs into one of the four 

triage categories based on the rules in Figure 1. The input and annotation 

steps in the validation dataset are schematically shown in Figure 2.

As manual annotation by a panel is time-intensive, a sample size cal-

culation was performed to achieve adequate precision of the validation 

performance measures. For this, a minimum of 50 cases per category 

was needed.22 As the smallest triage category in the training dataset has 

a prevalence of approximately 5%, the validation dataset consisted of 

1000 recordings from unique patients. All ECGs of these patients were 

excluded from the training dataset. 

Algorithm development
Considering that lead III, aVR, aVL and aVF are derived from lead I and II, we 

used the raw 10 second 8-channel waveforms (I, II and V1-V6), sampled at 

500Hz, as the input for our DNN. We applied an architecture similar to the 

Inception ResNet network, by combining blocks of convolutional layers in 

parallel with residual connections.23,24 This network is built with layers of 

identical blocks with a pre-activation design, consisting of two 1-dimensio-

nal convolutional layers, preceded by batch normalization, rectified linear 

unit (ReLU) activation and dropout.25–27 Every residual block consists of 

three parallel branches; one with a normal convolutional layer, one with a 

dilated convolutional layer and one with a shortcut connection, where the 

input to the block is added to the output unadjusted.28 This enables the 

network to determine features in two different time-dimensions, where 

the dilated convolution covers a complete heartbeat. The output of the 

last block was flattened and used as input to a fully connected layer with a 

ReLU nonlinearity, followed by dropout. The output layer consisted of four 

nodes, one for every triage category, and a softmax function was used 

to produce a probability distribution over all triage categories. A similar 

auxiliary output was added in the middle of the network and its loss was 

added to the total loss during training. 

After hyperparameter and architecture optimization, the final selected 

network consisted of 16 residual blocks with two 1D convolutional layers 

with filter size 5 and dilation of 100 (Supplemental Figure 1). Every other 

block downsampled the input using a strided convolution and the number 

of filters was doubled every fourth block. Dropout was performed with a 

probability of 30%. The fully connected layer consisted of 256 nodes. 

This resulted in a final network with 37 layers.

Assessment of ECG by two independent 

experts

VALIDATION DATA LABELSTRAINING DATA LABELS

Physician ECG annotation

Tokenization and collocation extraction

atrial fibrillation with fast ventricular response 

left bundle branch block

abnormal ECG

Triage dictionary-based classification

atrial fibrillation with fast ventricular response 

left bundle branch block

abnormal ECG

“Atrial fibrillation with fast ventricular response and a 

left bundle branch block. Abnormal ECG.”

Final triage category assigned based on term or colloca-

tion with highest triage category

Normal Abnormal Subacute AcuteNormal Abnormal Subacute Acute

If no agreement on triage category, 

consultation of third expert

Final triage category assigned by majority vote

Figure 2.
Overview of the 
labelling into 
triage categories 
in the training and 
validation datasets. 
The training labels 
(left), used for training, 
are derived from the 
free-text annotation 
given to the ECG by 
a single physician in 
daily practice. The 
ECG diagnoses are 
mapped to triage 
categories using rules 
defined by a panel of 
electrophysiologists 
(Figure 1). The 
validation labels 
(right), used for 
validation of the DNN, 
are given by the 
expert panel based on 
visual inspection of a 
12-lead ECG.
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This network was trained using the Adam optimizer with a learning 

rate of 0.0005 and a mini batch size of 128.29 Weighted focal loss was 

used to counteract the category imbalance in the dataset and to minimize 

the number of false negatives.30 Training was terminated when the loss 

stopped decreasing in the 5% subset of the training dataset. Network 

training was performed using the PyTorch package (version 1.3) on a Titan 

Xp GPU (NVIDIA Corporation, Santa Clara, CA, United States).31

The different network architectures and hyperparameters were cho-

sen using a combination of manual tuning and random grid search. The 

network with the lowest loss in a 5% randomly sampled subset of the 

training dataset was chosen. When multiple architectures showed similar 

performance, the simplest architecture was selected. The following hy-

perparameters were assessed: the use of dilated convolutions, residual 

connections, max pooling, an auxiliary loss and/or fully connected layers, 

the number of layers, the size and number of convolutional filters, the 

dropout rate, the learning rate and the weights of the loss. We also exper-

imented with an ordinal loss method instead of a multinomial loss method 

and with adding age and sex to the flattened layer, but this did not result 

in increased performance.32,33 

Visualization of the DNN
To improve understanding of the decisions of the DNN, Guided Grad-

CAM, a technique for visual explanations in convolutional neural networ-

ks, was adjusted for use in 1-dimensional data.34 Guided Grad-CAM is 

a combination between the fine-grained Guided Backpropagation and 

Grad-CAM, which produces a coarse class-discriminative heatmap based 

on the final convolutional layer.34,35 The heatmap is superimposed over 

the ECG recording and shows the regions in the ECG important to the 

DNN for predicting a specific triage category.

Statistical analysis
Inter-observer agreement was quantified using squared weighted 

Cohen’s kappa for two reviewers or tests and ordinal Krippendorff’s alpha 

for more than two reviewers.36,37 Considering the imbalance in category 

frequencies, overall algorithm discriminatory performance was assessed 

with the unweighted mean of all pairwise concordance (or c) statistics 

(also known as area under the receiver operating curve (AUROC)) and the 

polytomous discriminatory index (PDI).38–40 The first metric estimates the 

probability to correctly distinguish between all pairs of two patients from 

different categories, where a value of 0.5 denotes random performan-

ce and 1 perfect performance. The second assesses the discrimination 

between all categories simultaneously in a set approach. It estimates the 

probability to correctly identify a specific patient in a set of patients from 

every category, where 0.25 denotes random and 1 perfect performance 

with four categories.38,39,41 As a second step, category-specific performan-

ce is assessed with the c-statistic, PDI, sensitivity, specificity and positive 

and negative predictive values. All category-specific measures, except 

the PDI, were applied in a one-versus-other approach.

All statistical analyses were performed using R version 3.5 (R Foun-

dation for Statistical Computing, Vienna, Austria). The TRIPOD Statement 

for reporting of diagnostic models was followed, where appropriate.42 

All data are presented as mean ± standard deviation or median with in-

terquartile range (IQR). The 95% confidence intervals around the perfor-

mance measures were obtained using 2000 bootstrap samples.
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Results

The total training dataset consisted of 336.835 recordings of 142.040 pa-

tients. The distribution of triage categories was unbalanced with the most 

recordings in category 2 (45.5%) and the least in category 4 (4.8%). In the 

validation dataset, there was consensus between the two experts in 736 

cases (73.6%). After consultation of a third tie-breaker expert (248 cases, 

24.8%), the panel meeting (29 cases, 2.9%) and exclusion of recordings of 

insufficient quality, 984 validation cases were used for the analysis. There 

was good inter-observer agreement, with a Krippendorff’s alpha of 0.72. 

Conflicts in the first expert annotation round occurred the most between 

category 1 and 2 (162/255, 64%), between category 2 and 3 (30/255, 12%) 

and between category 2 and 4 (24/255, 9.5%). Disagreement between 

category 1 and 2 was mostly due to different assessments on the presen-

ce of nonspecific ST-segment or T-wave abnormalities. For category 2 

and 3 and category 3 and 4, the most common difference was the inter-

pretation of ST-segment elevation or depression. Table 1 summarizes the 

patient demographics and triage category distributions of the recordings 

in the training and validation datasets.

The overall discrimination, as measured by the unweighted mean of 

pairwise c-statistics and the PDI, of the DNN demonstrated in this paper 

were 0.93 (95% CI 0.92 – 0.95) and 0.83 (95% CI 0.79 – 0.87), respec-

tively. C-statistics, PDIs, sensitivities, specificities, positive predictive val-

ues (PPV) and negative predictive values (NPV) per triage category in a 

one-versus-other approach are shown in Table 2, while the confusion 

matrix is appreciated  in Figure 3. Visualizations of the regions in the ECG 

important for the DNN to predict a specific category are shown in Figure 

4. The full 12-lead ECGs can be found in Supplemental Figures 2-6.

The DNN predicted a lower triage category than the true category 

(undertriage) in 88 (8.9%) and a higher category (overtriage) in 107 (11%) 

of the recordings in the validation dataset. Most undertriage (59/88, 67%) 

Table 1.
Patient demographics 

and distribution of 
triage categories 

in the training and 
validation datasets.

A 5% randomly 
sampled subset of the 

training dataset was 
used for model tuning 

and internal validation. 
The validation dataset 

is independent from 
the training dataset. 
† Distribution based 

on text mining 
categorization of 

annotations by 
physician in daily 

practice. ‡ Distribution 
based on the expert 

consensus panel 
annotations.

TRAINING
(n = 336.835)

VALIDATION
(n = 984)

MALE SEX (n (%))

AGE (mean (sd))

Emergency
Department

Pre-operative
screening

Intensive
Care Unit

Recovery Ward

Other

Normal

Abnormal, not acute

Abnormal, subacute

Abnormal, acute

Non-cardiology
outpatient clinic

Non-cardiology ward

TR
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RY
 (n

 (%
))

LO
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AT
IO

N
 (n

 (%
))

188858 (56.1)

92532 (27.5)

60.8 (15.5)

20045 (6.0)

73170 (21.7)

86630 (25.7)

6300 (1.9)

53994 (16.0)

4164 (1.2)

142456 (42.3) †

153360 (45.5) †

24731 (7.3) †

16288 (4.8) †

402 (54.3)

310 (31.5)

60.4 (15.3)

63 (6.4)

161 (16.4)

263 (26.7)

8 (0.8)

163 (16.6)

80 (8.1)‡

418 (42.5) ‡

410 (41.7) ‡

76 (7.7) ‡

80 (8.1) ‡
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NORMAL ABNORMAL,
NOT ACUTE

C-STATISTIC (95% CI)

SENSITIVITY

POSITIVE PREDICTIVE VALUE

PDI (95% CI)

SPECIFICITY

NEGATIVE PREDICTIVE VALUE

0.95 
(0.94 – 0.96)

0.87

0.85

0.91 
(0.87 – 0.93)

0.88

0.90

0.91 
(0.89 – 0.93)

0.76

0.83

0.80 
(0.75 – 0.84)

0.89

0.84

ABNORMAL,
SUBACUTE

ABNORMAL,
ACUTE

0.94
(0.90 – 0.97)

0.64

0.78

0.98

0.97

0.94
(0.90 – 0.97)

0.79

0.55

0.82
(0.75 – 0.88)

0.80
(0.73 – 0.87)

0.94

0.98

Table 2.
Diagnostic performance 
measures per triage category 
for the deep neural network in 
the panel annotated validation 
dataset.
The c-statistics, sensitivities, 
specificities, positive and 
negative predictive values are 
calculated in a one-vs-other 
approach and compare the 
category with the highest 
probability to the reference 
standard. The PDI estimates 
the probability that a patient 
from that category is correctly 
identified from a set of cases 
from every category.
CI: confidence interval, 
C-statistic: concordance statistic, 
equivalent to area under the 
receiver operating characteristic 
curve, PDI: polytomous 
discriminatory index.

occurred between categories 1 and 2 and these undertriaged recordings 

were categorized as 2 by the panel based on nonspecific ST-segment 

abnormalities (26/59, 44%), old ischemia (12/59, 20%), left ventricular hy-

pertrophy (7/59, 12%) or other reasons (14/59, 24%). All 9 acute category 4 

recordings triaged as category 2 contained ST-depression or T-wave in-

version and no ST-elevation. In the category 2 recordings overtriaged as 

4, the panel did mention nonspecific ST-segment abnormalities in 20/34 

(59%) recordings and old ischemia in 8/34 (24%).

As the labelling procedures for the training and validation datasets dif-

fer (Figure 2), the performance of the DNN could be dependent on errors 

in two steps in the training labelling procedure. Firstly, the inter-observer 

agreement between manual categorization of the free-text physician ECG 

annotations into triage categories and the text mining-based categoriza-

tion was excellent in the validation dataset, with a weighted Cohen’s kap-

pa of 0.96. Secondly, agreement between the text mining-based triage 

categories and the reference standard was good (Cohen’s kappa 0.74). 

The overall c-statistic and PDI for predicting the reference standard triage 

category with the text mining-based categories were 0.86 (95% CI 0.85 – 

0.88) and 0.48 (95% CI 0.43 – 0.53), respectively.

Figure 3.
Confusion matrix 

for the deep neural 
network.

Rows represent the 
categories given 
by the reference 
standard (expert 

panel) and columns 
the categories 

predicted by the 
deep neural network 
(DNN). The colormap 

is normalized per row 
and represents the 

percentage in the true 
triage category.
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Discussion

This study is among the first to apply DNNs to a large dataset of 12-

lead ECGs for automatic interpretation. We demonstrated that a deep 

learning approach performs well in detecting abnormalities for triage 

of 12-lead ECGs. Our DNN has an excellent c-statistic of 0.93 (95% CI 

0.92 – 0.95) and good PDI of 0.83 (95% CI 0.79 – 0.87), with high posi-

tive- and negative predictive values across all triage categories. These 

findings indicate that a deep learning approach may be used to support 

the physician in ECG triage and reduce clinical workload with an impro-

ved prioritization of ECGs for interpretation by the cardiologist.

Interpretation of the ECG requires extensive knowledge of the wide 

variety of electrical manifestations of heart disease and a good under-

standing of normal variety. This has been a challenge for both manual 

and computerized interpretation, and has led to a collection of defini-

tions, measurements and criteria to aid clinical decision making.5,20 This 

challenge is extensively described in earlier studies but comparisons 

are difficult, as the studies demonstrate wide variations in diagnostic 

measures and an international accepted standard for validation of ECG 

diagnosis is still missing.4,5 For comprehensive ECG interpretation non-

cardiologist physicians correctly identified 36% to 96% of the diagno-

ses, with significant differences between physicians and increasing per-

formance for more experienced physicians.4,43–45 Most studies focused 

on particular aspects of ECG interpretation, such as normal-abnormal 

differentiation, arrythmia classification and detection of ST-elevation 

myocardial infarction (STEMI). Overall, for these aspects physicians have 

higher false negative rates, while computerized algorithms have higher 

false positive rates, when compared to expert panels.4,5,7–9,43–45 The DNN 

could improve both the high false positive and negative rates, while 

producing consistent results not dependent on external factors, such as 

physician experience.

Figure 4.
Examples of 

electrocardiogram 
(ECG) leads II and V1 

with superimposed 
a Guided Grad-CAM 

visualization showing 
regions important 

for the deep neural 
network (DNN) to 
predict a certain 
triage category.

A Normal ECG with 
focus on the P-wave, 

QRS-complex and 
T-wave. B Normal ECG 

with a single ignored 
premature ventricular 

complex (PVC). C 
Subacute ECG with 

a long QT interval 
and a focus on the 
beginning and end 
of the QT-segment. 

D Acute ECG with an 
inferior ST-elevation 

myocardial infarction 
and a focus on the ST-
segment and J-point. 

E Acute ECG with 
a junctional escape 

rhythm and a focus on 
the pre-QRS-segment, 

where the P-wave is 
missing. The full 12-

lead ECGs are available 
in Supplementary 

Figures 2-6.
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Conventional CIE uses manually derived features, which only capture a 

fraction of the available information for any manifestation of heart disease 

in the obtained raw signal. This is one of the reasons that could explain 

the excellent performance of our algorithm and DNNs in general, as their 

integrated feature discovery and classification incorporates the whole raw 

input signal. In addition, conventional CIE algorithms are tuned to produce 

complete interpretations of the ECG and are less focused on one of their 

most important uses, quick triage. By training on a large physician-annotat-

ed 12-lead ECG dataset, where the labels are mapped to predefined triage 

categories, we focus on a single task and are able to achieve high accura-

cy. The large size of the dataset makes that the network has seen a wide 

variety of ECGs and should therefore be well generalizable.

Although the DNN does not use any manually selected features of the 

signal, visualizations show that the network bases its decisions on same re-

gions in the ECG as experts would. As shown in Figure 4 the network cor-

rectly identifies a normal ECG, a long QT-segment, ST-elevation myocardial 

infarction and a junctional escape rhythm in sensible regions and correctly 

ignores a premature ventricular complex in a normal ECG.  Furthermore, in-

spection of the misclassifications of the DNN shows a similar pattern to the 

disagreement between the experts in the panel. The correct interpretation 

of ST-segment and T-wave abnormalities is apparently challenging for both 

the cardiologist and the DNN.

The DNN is trained on triage category labels that were automatically 

derived using text mining on free text annotations by a single physician in 

daily practice. Disagreement measures show that the text mining catego-

ries do not completely agree with the labels given by the expert panel. Most 

of this disagreement is caused by disagreement between the expert panel 

labels and the automatically categorized single physician labels (Cohen’s 

kappa 0.74). Considering this substantial disagreement between training 

and validation labels, we might expect that the DNN cannot outperform the 

performance measures for prediction with only the text mining-based triage 

categories. However, the DNN exceeds both the overall c-statistic and PDI 

of the text mining-based triage categories and shows to be robust against 

considerable training label noise. This is in line with previous research that 

showed that deep neural network can handle label noise quite well.46  

Other research demonstrated the value of DNN for ECG interpreta-

tion for similar problems, where a single-lead ECG was used for arrhyth-

mia classification and a 12-lead ECG for early detection of atrial fibrillation, 

contractile dysfunction and hyperkalemia.16–19 Our study shows that, in 

comparison to combining ECG recordings with other imaging modalities 

or laboratory findings, it is also feasible to use the less structured and 

noisy physician labels to successfully train a DNN for comprehensive ECG 

triaging. Moreover, this is one of the first studies to visualize regions in the 

ECG important for the decisions of the DNN.34

Triage is the process of classifying according to the severity of the 

case to determine how quickly action is needed. Careful triage is need-

ed to prioritize those cases where timely action reduces morbidity and 

mortality among patients. For a triage algorithm to be effective, it is im-

portant that undertriage, e.g. failure to detect patients with acute disease, 

and overtriage, e.g. false alarms, are minimized. Our DNN shows very 

high negative predictive values for the highest categories, subacute and 

acute (Table 2). This can potentially reduce time-to-treatment for patients 

with acute cardiac disorders, as the algorithm is able to provide triage 

advice immediately after the ECG is acquired and before the ECG is as-

sessed by a physician with sufficient expertise. However, the sensitivities 

for the subacute and acute categories of 64% and 79% are partly due to 

undertriage (Figure 3) and therefore need further improvement before 

clinical implementation is possible. The algorithm shows relatively high 

positive predictive values, which will decrease the amount of false alarms 

in otherwise normal ECGs. Since most hospital-acquired ECGs fall into 

this category, a modest improvement can already significantly decrease 

the workload for physicians. 

This study has several limitations to address. Though a reasonable 

large training dataset was used, the acute categories remained relatively 

small. This is customary to an unselected real-world dataset but entails a 

chance of underprediction. We made use of the focal loss method, used 

in computer-vision DNN algorithms, to counteract this problem.26 In the 

validation dataset the triage category distribution was similar, but confi-

dence intervals showed adequate precision in the smaller categories too. 

The representative sampling of the validation is also a strength, making 
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it possible to derive positive and negative predictive values, which are 

most important to the patient. We believe that the panel-annotated vali-

dation dataset in this study provides a good measure of generalizability 

of the physician annotation-based deep learning to hospital populations 

comparable to ours. It has been shown that ethnicity influences the ECG 

and could be taken into account to improve automated interpretation.47  

External validation is therefore needed when used with different record-

ing machines and in very different populations, such as patients in the 

general practice or populations with a different ethnical composition. This 

is beyond the scope of this study and will most likely require (re)training 

on a such a dataset. 

Both manual and computerized ECG interpretation are hard to stan-

dardize, as can be seen by high disagreement rates between the experts 

(Krippendorff’s alpha 0.72). This number is comparable to earlier studies 

on the inter-observer agreement between experts on ECG interpreta-

tion.4,6,48 The panel-annotated validation dataset used in this study is the 

current best reference standard available, but in clinical practice, many 

other diagnostic tests are used to interpret the ECG findings. Therefore, 

we suspect the diagnostic accuracy of our algorithm could be further op-

timized with hard clinical outcome data, such as a diagnosis and local-

ization of myocardial infarction with coronary artery angiography, cardiac 

enzymes and electrolyte disorders from laboratory data and even mortal-

ity. Both optimization with clinical outcome data and external validation is 

necessary before clinical implementation is possible.

Another future perspective of the DNN is their capability to contin-

uously improve and learn by adding new cases. Traditionally, neural 

networks did not provide uncertainly around their predictions, but new 

insights with several different Bayesian methods changed this.49 When 

combining uncertainty around the predictions with active learning, it be-

comes possible to let uncertain cases be annotated by a cardiologist and 

improve the algorithm, while easier cases can be classified automatical-

ly.50 Moreover, to determine the most important ECG leads, the algorithm 

could be trained and evaluated with fewer input channels. This could 

make the use of a similar algorithm with home-monitoring devices with 

less leads possible.

In conclusion, our end-to-end DNN can triage 12-lead electrocardio-

grams into normal, abnormal and acute with high discrimination across all 

categories. In clinical practice, this could lead to improved time-to-treat-

ment for acute cardiac disorders and decreased and better-balanced 

workload for clinicians. Further improvement with other clinical outcomes, 

prospective validation in other populations and implementation studies 

are needed before implementation in clinical practice is possible.
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Abstract

Background and aims 
Expert knowledge to correctly interpret electrocardiograms (ECGs) is not always readily available. 

An artificial intelligence (AI) based triage algorithm (DELTAnet), able to support physicians in ECG 

prioritization, could help reduce current logistic burden of overreading ECGs and improve time-to 

treatment for acute and life-threatening disorders. However, the effect of clinical implementation 

of such AI algorithms is rarely investigated.

Methods
Adult patients at non-cardiology departments who underwent ECG testing as a part of routine 

clinical care were included in this prospective cohort study. DELTAnet was used to classify 

12-lead ECGs into one of the following triage classes: normal, abnormal not acute, subacute, 

and acute. Performance was compared to triage classes based on the final clinical diagnosis. 

Moreover, the associations between predicted classes and clinical outcomes were investigated.

Results 
A total of 1061 patients and ECGs were included. Performance was good with a mean concordance 

statistic of 0.96 [95% CI 0.95-0.97] when comparing DELTAnet to the clinical triage classes. 

Moreover, zero ECGs that required a change in policy or referral to the cardiologist were missed 

and there was a limited number of cases predicted as acute that did not require follow-up (2.6%). 

Conclusions 
This study is the first to prospectively investigate the impact of clinical implementation of an ECG-

based AI triage algorithm. It shows that DELTAnet is efficacious and safe to be used in clinical 

practice for triage of 12-lead ECGs in non-cardiology hospital departments. 

Graphical abstract
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Introduction

Correct and timely interpretation of the electrocardiogram (ECG) is impor-

tant for accurate diagnosis of a variety of cardiac abnormalities, as early 

treatment results in lower mortality and decreases disease burden for li-

fe-threatening cardiac disorders.1–3 Expert knowledge to interpret ECGs 

is often not readily available, especially in prehospital care and non-car-

diology departments.4–6 Accurately prioritizing which ECGs need expert 

attention could lead to improvements in time to treatment and enhance 

the cost-effectiveness of current healthcare.7,8 

Recent advancements in the field of artificial intelligence have shown 

that deep neural networks (DNN) can learn to interpret ECGs with high 

accuracy.9 Previous studies have shown that DNNs can be used to de-

tect many separate ECG abnormalities, such as rhythm and conduction 

disorders.10–13 Our group developed a comprehensive DNN based triage 

algorithm (DELTAnet) that is able to consistently triage all 12-lead hospi-

tal ECGs.14 DELTAnet was trained to classify each ECG into one of the 

following 4 classes based on how quickly a cardiologist should be con-

sulted: (1) normal; no action needed, (2) abnormal not acute; consultation 

with low priority, (3) sub-acute; consultation with moderate priority, or (4) 

acute; consultation with high priority. This algorithm was validated in an 

expert-annotated test set and shows potential to support physicians in 

comprehensive triage and decision making regarding the prioritization of 

a newly acquired ECG.

Despite the rise in AI-optimized ECG interpretation approaches, clin-

ical implementation of these algorithms is limited. Essential steps should 

be completed before clinical implementation is possible: (1) development 

and internal validation, (2) external validation in other populations, and (3) 

assessment of the implementation of the model in clinical practice with 

its impact on patient outcomes.15 Most studies regarding automated ECG 

applications address the first two phases, but their implications for im-

plementation remain unclear. In this study, we aim to prospectively vali-

date the performance of DELTAnet and investigate the impact of possible 

implementation of DELTAnet in clinical practice when applied to 12-lead 

ECGs from multiple non-cardiology hospital departments. 
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Methods

Study Setting and Participants
We conducted a prospective, single-center, consecutive and observatio-

nal cohort study with adult inpatients who underwent ECG testing as a 

part of routine clinical care at University Medical Center Utrecht (UMCU, 

Utrecht, the Netherlands). Patients were included when their ECG was 

acquired in one of the following departments: the emergency room (ER), 

pre-operative screening department (POS), a non-cardiology ward or a 

non-cardiology outpatient clinic between October 1st and 31st of 2019. 

All ECGs were interpreted by a cardiologist or cardiology resident as part 

of the regular clinical workflow. Patients were excluded if their ECG was 

of insufficient quality, as annotated by the overreading physician. For pa-

tients with multiple ECGs acquired during their hospital stay, only the first 

ECG was selected for analysis. All ECGs were acquired using a Gene-

ral Electric MAC 5500 (GE Healthcare, Chicago, IL, United States) and 

electrodes could have been placed both in the standard or Mason-Likar 

configuration. The study was conducted under a protocol approved by 

the UMCU Institutional Review Board using a waiver of written informed 

consent. 

Triage classification of the ECG
We used a previously described deep learning-based triage algorithm 

(DELTAnet) that was developed and validated for comprehensive triage 

of 12-lead ECGs.14 In short, DELTAnet is a 37-layer convolutional neural 

network trained to triage ECG using a dataset of 336.835 ECGs from 

142.040 patients. For training, the physician annotations of each ECG were 

translated into one of the triage classes based on predefined criteria, and 

these triage classes were used to train the algorithm. Hyperparameters 

were tuned using a combination of manual tuning and random grid sear-

ch on a subset of 5% of the training dataset. DELTAnet was validated on 

an export-annotated test set of 984 ECGs from 984 patients. The algori-

thms outputs one of 4 triage categories, based on how quickly a cardio-

logist has to be consulted: [1] normal, [2] not acute abnormal (consultation 

with low priority), [3] subacute abnormal (consultation with moderate prio-

rity) and [4] acute abnormal (consultation with high priority). For this study, 

custom software automatically extracts the raw ECG data from the MUSE 

system (GE Healthcare, Chicago, IL, United States) and this data was then 

triaged by the DELTAnet algorithm on a standard desktop computer. The 

DELTAnet prediction was not shown to the physician in this study. 

We evaluated its performance by comparing the predicted triage 

classes to the triage classes as based on the final clinical diagnosis. 

In the development study, the model was trained and validated using 

only the physician annotation of the ECG categorized into one of the 

triage categories. Detailed ECG interpretation also needs additional 

Normal

Abnormal, not acute

Abnormal, subacute

Abnormal, acute

Acute coronary syndrome with 
ECG changes*
Acute rhythm disorders: AV(N)RT, 
VT, extreme bradycardia, escape or 
unde�ned rhythm and third degree 
AV block

Atrial fibrillation or flutter with 
fast ventricular response > 100/min
Second degree AV block
Prolonged QTc > 500ms
Acute pericarditis

Previous myocardial infarction
ST-segment abnormalities 
without diagnosis of ACS
Other non-acute disorders

Patient with ECG obtained in ER, 
POS or non-cardiology ward or 

outpatient clinic

Final clinical diagnosis

No

No

Yes

Yes

Yes

No

Figure 1.
Labeling into triage 

classes as based 
on final clinical 
diagnosis. For 

few cases where 
the cardiologist 

annotated diagnosis 
was not clear (e.g. 

whether specific 
or non-specific ST-
abnormalities), the 
ECG was assessed 

to determine the 
appropriate category. 

When multiple 
diagnoses were 

visible on the ECG, 
the highest triage 
class was chosen. 

All other non-acute 
disorders can be 

found in Supplemental 
Figure 1. * ECG 

changes were defined 
as ST-segment 

deviations or T-wave 
changes associated 

with ischemia. 
Abbreviations: ACS 

= acute coronary 
syndrome, AV(N)RT = 

Atrioventricular (nodal) 
reentry tachycardia, 

VT = ventricular 
tachycardia, AV block 

= atrioventricular 
block, AF = atrial 

fibrillation. 
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Outcome Measures
The outcome of this study is the expected impact of future implementation 

of DELTAnet into clinical practice in non-cardiology wards. We evaluated 

the classification performance as compared to the final clinical diagnosis 

in both the overall cohort as well as in several subgroups (age, gender, 

hospital location). Moreover, we compared the management of the pa-

tients between the predicted triage classes and focus on two outcomes: 

1) no important undertriage; defined as ECGs as normal that should have 

required cardiac follow-up, and 2) a limited proportion of overtriage; defi-

ned as ECGs predicted as acute that did not require any cardiac follow-up 

or had no final diagnosis of cardiac disease.

Statistical Analyses
For descriptive analysis, proportions and percentages and means with 

standard deviations (SD), or medians with interquartile ranges (IQR) when 

data was not normally distributed, were calculated. Overall classifica-

tion performance was evaluated in terms of the unweighted mean of all 

pairwise concordance-statistics (c-statistics, equivalent to area under the 

receiver operating curve).17,18 This method is robust to class imbalance 

and calculates the area under the receiver operating curve for all pairs 

of classes. Given the number of classes , any pair of classes  and  and 

the measure of separability between two classes, this metric is defined 

as follows:18 

For category-specific performance, we assessed c-statistics, sensi-

tivity, specificity, positive predictive values (PPV) and negative predictive 

values (NPV). All category-specific measures were applied in a one-ver-

sus-other approach. To estimate the 95% confidence interval (CI) of the 

performance metrics, we used 2000 rounds of bootstrapping. C-statistics 

were compared using permutation tests. The TRIPOD Guidelines were 

followed where applicable.19

clinical information, such as patient history, previous ECGs and results of 

other tests. In the current analysis, the final clinical diagnosis was therefore 

extracted from medical record data and used to determine the clinical tri-

age classes using the flowchart in Figure 1 and the diagnostic statement 

to triage class matrix in Supplemental Figure 1. The major difference 

between the current class definition and the one used for training is that 

ST-segment abnormalities are classified as either acute or not-acute based 

on the outcomes of laboratory tests and coronary angiography.

For comparison purposes we sought a commercially available and 

widely used conventional rule-based (ie. not deep learning-based) algo-

rithm for interpretation of 12-lead ECGs. The Marquette 12SL algorithm (GE 

Healthcare, Chicago, IL, United States) was selected, as it is used in all 

GE ECG systems and currently provides the computerized interpretation 

of the ECG in our hospital.16 Marquette 12SL diagnostic statements were 

manually mapped to triage classes based on Supplemental Figure 1. 

Association with clinical care and outcomes
Currently, in our hospital all ECGs acquired at non-cardiology departmen-

ts are systematically overread by a cardiologist or cardiology resident wi-

thin 24 hours, or faster when another physician asks for a consult. This a 

time-consuming tasks, which places a heavy logistic burden on clinical 

practice. To optimize this process, DELTAnet recommends the physician 

whether cardiologist consultation or overreading of the ECG is necessary 

and within which timeframe. Normal ECGs are no longer overread, while for 

acute ECGs consultation is immediate. To assess the effect of implementing 

the DELTAnet recommendation in clinical practice, the association between 

the predicted triage class and the currently chosen management for this 

patient was evaluated. For all patients, the following events were logged: 

cardiologist consultation, whether there was a change in patient manage-

ment (diagnostics, a medication change or a cardiac procedure, such as 

electrical cardioversion or coronary angiography), follow-up appointment at 

a cardiology clinic, the final clinical diagnosis (whether cardiac/non-cardiac) 

and clinical outcomes (length of hospital stay and in-hospital mortality). We 

evaluated whether using DELTAnet to guide physicians resulted in similar 

management for patients as in current clinical practice in our hospital.
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Results

Patient characteristics
A total of 1061 patients were found eligible, and 48 were excluded due 

to technically insufficient recording quality of the ECG. The distribution 

of predicted triage categories was unbalanced with the most recordings 

being normal (52%) and the least belonging to the subacute group (4%). 

Most ECGs were acquired at the ER (42%) and the smallest subset con-

tained ECGs obtained at non-cardiology wards (14%). Table 1 summarizes 

the patient characteristics, hospital locations and predicted triage class 

distributions of the data set.

Classification performance 
The overall classification performance of DELTAnet, as measured by the 

unweighted mean of pairwise c-statistics, was 0.96 [95% CI 0.95 - 0.97] 

when comparing the predicted triage classes to the final clinical diag-

nosis. DELTAnet outperformed the Marquette 12SL algorithm, which had 

an unweighted mean of pairwise c-statistics of 0.78 [95% CI 0.75-0.83, 

p < 0.001]. The c-statistics, sensitivities, specificities, positive predictive 

values, and negative predictive values per triage category of DELTAnet 

are shown in Table 2 and the corresponding confusion matrix in Figure 

2. Classification performance was good for all subgroups (Supplemental 

Figure 2). None of the pairwise combinations showed significant differen-

ces between subgroups.

Under- and overtriage 
For 59 patients (5.6%), DELTAnet predicted a lower triage class than was 

determined by the final clinical diagnosis (undertriage). Most undertriage 

consisted of patients classified as not acute but predicted to be normal by 

DELTAnet (57/59, 97% of all undertriage). These patients were classified 

as not acute based on nonspecific ST-abnormalities (21/57, 37%), incom-

plete right bundle branch block (9/57, 16%), aspecific intraventricular con-

duction delay (7/57, 12%), previous ischemia (6/57, 11%), bradycardia <50 

bpm (6/57, 11%), left ventricular hypertrophy (4/57, 7%), low QRS voltage 

(2/57, 4%), or a combination of mentioned abnormalities (2/57, 4%). One 

undertriage case (1/59, 2%) concerned a patient classified as acute but 

predicted to be non-acute by DELTAnet. This represented a patient that 

presented at the ER with chest pain, atypical ST-elevation in lead V2 and 

V3 without reciprocal depression and low troponin. The patient was cli-

nically triaged as acute because the final diagnosis was unstable angina 

with coronary stenosis on coronary angiography (Supplemental Figure 

3). The last undertriage case (1/59, 2%) reflected a patient classified as 

sub-acute because of QTc >500ms, but was predicted as non-acute by 

DELTAnet. 

OVERALL
n=1013

Age, median (IQR)

BMI, median (IQR)

History of cardiovascular disease, n (%)

Female sex, n (%)

Cardiac procedure in history, n (%)

Hypertension

Diabetes

High Cholesterol

Smoking

64 (52-73)

29 (25-30)

506 (49%)

439 (43%)

275 (27%)

467 (45%)

298 (29%)

232 (23%)

464 (46%)
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For 102 patients (9.6%), DELTAnet predicted a higher triage class than 

was determined by the final clinical diagnosis (overtriage). Most overtria-

ge occurred for patients classified as non-acute but predicted to be acute 

by DELTAnet (47/102, 46%). Overpredictions mainly represented patients 

with ST-abnormalities on the ECG but no final clinical diagnosis of acute 

ischemia (39/47, 72%) (Supplemental Figure 4). Other non-acute overpre-

dictions concerned patients with atrial fibrillation on the ECG (7/47, 15%), 

of which three patients showed atrial fibrillation in combination with other 

non-acute abnormalities (nonspecific ST-abnormalities or left fascicular 

block) (Supplemental Figure 5), and the last case (1/47, 2%) represented a 

paced rhythm (Supplemental Figure 6). 

With the Marquette 12SL algorithm, undertriage was observed in 73 

patients (6.8%) and overtriage in 155 patients (15%). The four patients with 

an acute final diagnosis, but misclassified as not acute, presented with 

pan-ischemia (2/2, 50%) and high-degree AV block (2/2, 50%). The 13 pa-

tients with a subacute final diagnosis, but misclassified as not acute or nor-

mal, presented with a prolonged QT interval (6/13, 46%), atrial fibrillation with 

fast ventricular response (5/13, 38%) or pericarditis (2/13, 16%). In 62 of the 

66 ECG misclassified as acute (94%), but with a final not acute diagnosis, 

signs of ischemia were mentioned in the Marquette 12SL diagnosis.

Associations with clinical care and outcomes
Overall, patients with a higher predicted triage class were more often re-

ferred for cardiac follow-up, more often diagnosed with cardiac disease, 

and had worse clinical outcomes (i.e. longer hospital admission and higher 

mortality rate, Table 3). Moreover, patients with a higher predicted class 

in general also represented patients with more severe clinical diagnoses 

(Supplemental Table 1). 

Of the 529 (52% of the cohort) patients with an ECG classified as nor-

mal by DELTAnet, a cardiologist was consulted in 79/529 (15%) of the cas-

es, mostly in the ER. For most patients this did not results in a change of 

management (45/529, 8.5%). For the other 34/529 (6.4%) patients, follow-up 

was recommended (additional diagnostics or admission to a cardiology 

ward) in 15/34 (44%) patients, a change in medication was made in 14/34 

OVERALL
n=1013

Emergency room

Non-cardiology ward

Non-cardiology outpatient clinic

Pre-operative screening

Normal

Abnormal, not acute

Abnormal, subacute

Abnormal, acute

430 (42%)

143 (14%)

529 (52%)

253 (25%)

187 (18%)

373 (37%)

29 (3%)

82 (8%)
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Table 1
Patient 
characteristics 
and distributions 
in hospital 
location and 
triage classes.

Figure 2.
Confusion matrix 

comparing Marquette 
12SL and DELTAnet 

predictions to the 
clinical triage classes 

(based on final clinical 
diagnosis).

The color map 
represents the 

percentage in the 
clinical triage class, 
normalized per row.
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NORMAL ABNORMAL,
NOT ACUTE

C-STATISTIC (95% CI)

SPECIFICITY

PPV

SENSITIVITY

PPV

0.95(0.94-0.96)

0.89

0.91

0.92

0.89

0.91 
(0.89 – 0.93)

0.93

0.83

0.76

0.89

ABNORMAL,
SUBACUTE

ABNORMAL,
ACUTE

0.99
(0.98-1.00)

1.0

0.99

0.90

0.98
(0.97-0.99)

0.94

1.0

0.68 0.96

0.27

Table 2.
Performance 
measures per triage 
class comparing 
predicted triage 
classes by DELTAnet 
with clinical triage 
classes.
C-statistics 
(concordance 
statistic), sensitivities, 
specificities, positive 
and negative 
predictive values are 
all calculated in a 1-vs-
other approach. CI = 
confidence interval, 
PPV = positive 
predictive value, NPV 
= negative predictive 
value.

(41%) patients and a cardiac procedure (percutaneous coronary interven-

tion, coronary artery bypass grafting surgery, pericardiocentesis or pace-

maker implantation) was performed in 5/34 (15%) patients. Of these 34 pa-

tients with a change in management, 1 patient represented acute pathology 

(acute coronary syndrome without clear ECG abnormalities), the others all 

represented normal or abnormal non-acute patients. In these cases, a car-

diologist was consulted based on cardiac complaints, or for other questions 

(e.g. to evaluate possible cardiac spread of infections, or help in determin-

ing the appropriate treatment plan because of a history of cardiac disease: 

17/34 patients were already known with cardiac disease). All 34 cases are 

described in detail in Supplemental Figures 7 to 40.

Of the 82 patients with an ECG predicted as acute by DELTAnet, a car-

diologist was consulted in 55/82 (67%) patients. In the 27 (34%) patients 

where no cardiologist was consulted, most patients (15/27, 56%) had ECG 

abnormalities consistent with previous ECGs and therefore did not require 

follow-up. These ECGs were mostly acquired for other reasons than clinical 

complaints: only 2/27 (7%) patients had symptoms of chest pain, while 8/27 

(30%) were routine control ECGs at the POS or outpatient clinic, 3/27 (11%) 

were acquired to evaluate whether a medication change would be allowed 

(risk for long QT abnormalities) and for the other 14/27 (52%) the reason for 

ECG was not documented. 
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ABNORMAL, 
NOT ACUTE
n=373

NORMAL
n=529

Cardiologist consulted?

Follow-up appointment cardio clinic?

Change in management after ECG*

Final diagnosis of cardiac disease, n (%)

Length of Stay, mean (SD), days

Hospital Mortality

117 (31%)79 (15%)

34 (6%)

36 (7%)

27 (5%)

3 ± 13

3 (0.6%)

80 (21%)

4 ± 10

72 (19%)

194 (52%)

8 (2%)

FO
LL

O
W

-U
P,

 N
 (%

)
C

LI
N

IC
AL

 O
U

TC
O

M
ES

ABNORMAL, 
SUBACUTE
n=29

ABNORMAL, 
ACUTE
n=82

P-VALUE

19 (66%) 54 (66%) <0.0001**

11 (38%) 31 (38%) <0.0001**

6 ± 13 6 ± 21 <0.0001***

17 (59%) 47 (57%) <0.0001**

24 (83%) 53 (65%) <0.0001**

0 (0%) 10 (12%) <0.0001***

Table 3.
Differences in provided 
clinical follow-up, diagnosis 
and outcomes per predicted 
triage class. A p-value of 
<0.05 denotes significant 
difference. *change in 
management defined as either 
a cardiac medication change, a 
performed cardiac procedure, 
when the patient was admitted 
to a cardiology department, 
or when cardiac follow-up 
diagnostics (e.g. ECG/lab) were 
proposed.
**pairwise comparisons showed 
a significant difference for 
all pairwise comparisons (p < 
0.001), except for the difference 
between the sub-acute and 
acute group (all p > 0.05).  
***pairwise comparisons 
showed a significant difference 
for the normal group versus 
either the abnormal not acute, 
sub-acute or acute group (p < 
0.001) for the in-hospital length-
of stay. Pairwise comparisons 
showed a significant difference 
between the normal and acute 
group and the abnormal not-
acute and acute group (p < 
0.001) for both in-hospital and 
1-year mortality.
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Discussion

This study is the first to prospectively assess the impact of implementing 

an ECG-based AI algorithm for triage of 12-lead ECGs in non-cardiology 

departments. We demonstrated DELTAnet to be safe when implemented 

in clinical practice: no important ECGs were missed and the number of 

ECGs predicted as acute that did not require follow-up was very limited 

(2.6%). Moreover, we showed excellent classification performance for 

both the overall population and when stratified in subgroups, similar to 

the original test dataset, and outperforming the currently employed Mar-

quette 12SL algorithm.14 Therewith, this indicates that DELTAnet can be 

safely used to prioritize non-cardiology ECGs by automatically assessing 

normal ECGs and by potentially warning the physician for acute ECGs 

requiring immediate follow-up by a cardiologist. 

Classification performance of DELTAnet was excellent in this prospec-

tive validation dataset with an overall c-statistic of 0.96 [95% CI 0.95 - 

0.97], comparable to the performance during internal validation (c-statistic 

0.93 [95% CI 0.92 – 0.95]).14 The internal validation dataset was annotated 

by a panel of electrophysiologists that only had access to the ECG. For 

some ECG abnormalities, such as wide complex tachycardia or ST-seg-

ment deviations, additional information from previous ECGs, follow-up or 

additional diagnostics is needed for accurate triage. In the current valida-

tion dataset we therefore took all clinical data into account to determine 

the final clinical diagnosis associated to this ECG. This led to many previ-

ously acute ECGs being classified as not acute. It turns out that in the pre-

vious study the panel labeled many ECGs with ST-segment abnormalities 

or wide complex tachycardia as acute when having no knowledge of the 

other clinical information. The reclassification in the current analysis led to 

an increase of the sensitivity of the acute class from 79% to 96%, without 

reducing specificity. 

One other study investigated the use of deep neural networks for 

triage of ECGs in the Emergency Department and showed improved per-

formance over a conventional rule-based ECG algorithm.20 Although their 

algorithm shows similar sensitivity and specificity for differentiating normal 

and abnormal ECGs, DELTAnet greatly outperforms their sensitivity in de-

tecting acute ECGs (53% vs 96%), making it much safer for use in clinical 

practice. Comparison to other studies remains challenging, as wide vari-

eties of ECG abnormalities are assessed in different studies using differ-

ent metrics. One important observation from a recent meta-analysis is, 

however, that non-cardiologist physicians perform poorly in interpreting 

ECGs with a pooled accuracy of 69%.5 This is exactly the area where 

the current algorithm can be used to prevent important ECGs from being 

missed while saving time by prioritizing other ECGs. 

Over- and undertriage
For DELTAnet to be safe and efficacious for implementation into clinical 

practice, undertriage (failure to identify patients that need to be referred) 

and overtriage (false alarms, unnecessary consultations of the cardiolo-

gist) should be minimized. DELTAnet showed very high negative predicti-

ve values compared to clinical triage classes for the acute classes (NPV 

= 0.99, Table 2). This is among the most important findings of the cur-

rent study, as it allows for safe implementation of the algorithm in clinical 

practice. It must be noted that there were some cases of non-ST-elevation 

acute coronary syndrome and unstable angina classified as normal or 

not acute, but these patients did not have ECG abnormalities at the time 

(Supplemental Table 1). Therefore, one should realize that the main goal 

of DELTAnet is to support physicians in decision-making regarding the 

acuteness and prioritization of new acquired ECGs; DELTAnet does not 

aim to (and will not be able to) substitute clinical decision-making. Only 

patients with ECG abnormalities at time of ECG can be detected using 

such an algorithm. 

Most undertriage was seen for the abormal, not acute class, where 

7.7% of ECGs with that final diagnosis were classified as normal (Figure 

2). Detailed inspection of the cases showed that this was mostly due to 

disagreement between the treating physician and algorithm on the mean-

ing of non-specific ST-segment abnormalities. In practice, in 15% of the 
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patients with an ECG classified as normal by DELTAnet a cardiologist was 

consulted, which resulted in a change of management in 6% of patients. 

These cases concerned patients where the clinical presentation of the 

patient was leading in clinical decision-making and no or minimal abnor-

malities were seen on the ECG. None of these patients would therefore 

have been wrongfully overlooked by a cardiologist if DELTAnet would 

have been implemented.

The main challenge of the algorithm resides in the overtriage of acute 

disease, showing a lower positive predictive value (0.27) for this class. 

This lower PPV results from weighting in the training phase, where the 

algorithm was penalized for undertriaging acute ECGs, as this might cau-

se undesirable false negatives in clinical practice. The PPV in the current 

validation set is lower than the original study. The panel that labeled the 

validation dataset in the original study marked many ECGs as acute ba-

sed on ST-segment abnormalities. These are now classified as abnormal 

not acute when taking previous ECGs and other tests (such as troponin 

testing and the outcomes of coronary angiography) into account. This 

distinction between non-acute and acute ST-abnormalities remains a 

challenge, especially as DELTAnet cannot take into account symptoms 

or previous ECG without a current diagnosis of ACS. Overtriage is not 

expected to have much negative consequences: ST-abnormalities can 

be dangerous when undetected, so consultation with an expert to justi-

fy or rule-out possible ischemia seems appropriate in these cases. The 

high rate of false positives for the acute class could lead to alarm fatigue, 

as most of the ECGs predicted as acute do not need acute follow-up.21 

Overall, however, these false positives only account for 5.9% of the ECGs, 

lowering the risks of alarm fatigue (Figure 2).

Limitations
There are several limitations to address. First, the number of times a car-

diologist was consulted might be underestimated, as this may not always 

have been logged. However, important cases are always documented 

so it can be assumed that when not documented, no further follow-up 

was required. Second, our study is a background implementation study 

and therefore we were not able to perform extra diagnostic tests to justify 

the results or perform further investigation. This could have lead to an 

underestimation of undertriage of the acute class, as patients with acute 

myocardial ischemia could have been missed completely. Also, we are 

not able to assess the effect that implementation of DELTAnet would have 

on clinical decision-making, despite the prospective nature of this study. 

Implications for future work
An important next step will be to perform a randomized controlled trial 

to evaluate implementation in real-world clinical practice with its true im-

pact on clinical care and patient outcomes. Other future perspectives to 

improve its clinical applicability include adding visualization methods and 

uncertainty models that can identify the cases the algorithm is prone to 

misdiagnose.22,23  In addition, another future goal is to investigate whether 

automated comparison of a new acquired ECG to previous ECGs would 

be possible. Eventually, an ‘AI-ECG dashboard’ needs to be developed 

that is able to clearly present the ECG with predicted triage categories 

along with ECG features important for prediction. At last, a goal is to im-

plement DELTAnet in mobile ECG devices, making it applicable for use in 

pre-hospital settings or places where standard 12-lead ECG is not readily 

available. 
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Conclusion

This study is the first to prospectively validate an ECG-based AI triage 

algorithm and provide insight into its clinical implementation. We demon-

strated that DELTAnet is safe to be used in clinical practice for triage of 12-

lead ECGs, acquired at non-cardiology departments, and outperformed 

the currently employed algorithm for computerized interpretation of the 

ECG (Marquette 12SL).  Implementation of DELTAnet could possibly lead 

to decreased workload for physicians and quicker recognition of acute 

life-threatening cardiac disorders. As a next step, a randomized study will 

be performed to evaluate its added value on clinical care and patient 

outcomes compared to current care.
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Abstract

Aims
Automated interpretation of electrocardiograms (ECGs) using deep neural networks (DNNs) has 

gained much attention recently. While the initial results have been encouraging, limited attention 

has been paid to whether such results can be trusted, which is paramount for their clinical 

implementation. This study aims to systematically investigate uncertainty estimation techniques 

for automated classification of ECGs using DNNs and to gain insight into its utility through a 

clinical simulation.

Methods and results
On a total of 526,656 ECGs from three different datasets, six different methods for estimation 

of aleatoric and epistemic uncertainty were systematically investigated. The methods were 

evaluated based on ranking, calibration and robustness against out-of-distribution data. 

Furthermore, a clinical simulation was performed where increasing uncertainty thresholds were 

applied to achieve a clinically acceptable performance. Finally, the correspondence between 

the uncertainty of ECGs and the lack of interpretational agreement between cardiologists was 

estimated. Results demonstrated the largest benefit when modelling both epistemic and aleatoric 

uncertainty. Notably, the combination of variational inference with Bayesian decomposition and 

ensemble with auxiliary output outperformed the other methods. The clinical simulation showed 

that accuracy of the algorithm increased as uncertain predictions were referred to the physician. 

Moreover, high uncertainty in DNN-based ECG classification strongly corresponded with lower 

diagnostic agreement in cardiologist’s interpretation (p < 0.001).

Conclusion
Uncertainty estimation is warranted in automated DNN-based ECG classification and its accurate 

estimation enables intermediate quality control in the clinical implementation of deep learning. 

This is an important step towards clinical applicability of automated ECG diagnosis using DNNs.

Graphical abstract
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Introduction 

Worldwide, more than 300 million electrocardiograms (ECGs) are annual-

ly acquired, making it the most widespread cardiological diagnostic test 

in use. The ECG is utilized in daily clinical practice to diagnose a wide 

range of potentially life-threatening abnormalities and its correct interpre-

tation requires expert knowledge from an experienced cardiologist, whi-

ch might not always be directly available. Moreover, the massive number 

of ECGs acquired places a considerable logistic burden on the clinical 

routine.1 Computerized interpretation of the ECG (CIE) has become incre-

asingly important in supporting clinical practice. However, CIE has not yet 

been able to reach cardiologist-level accuracy and overreading automa-

ted ECG interpretations remains necessary.2

Substantial improvement in CIE is forthcoming with the development 

of deep learning algorithms that can learn abstract features from the raw 

ECG signal without the need for laborious hand-crafted feature extraction. 

Recent studies have shown encouraging results of deep neural networks 

(DNNs) applied to ECGs, ranging from detection of selected arrhythmias 

or conduction disorders to comprehensive interpretation for automatic tri-

age.3–5 While such reports have demonstrated the efficacy of deep learn-

ing in ECG analysis, there are additional challenges to be addressed be-

fore deep learning-based methods can be deployed in clinical practice.6

One such challenge is found in the fact that current deep learning 

models are architecturally forced to provide an output that translates to a 

diagnosis or prediction, while not reporting back to the user the degree 

to which such output might be uncertain (i.e. to which degree the model 

does not know the output is indeed correct). This output is provided even 

when the model has not seen the input before. Therefore, all prior deep 

learning models reported have been promoted without any evaluation or 

management of the uncertainty associated to their estimations.7,8 It has 

been argued that the Softmax output (the probability distribution of pre-

dicted classes) of a regular DNN can also be interpreted as a measure of 

uncertainty. However, research has shown that this produces erroneous 

predictions with high confidence on unseen data and is therefore unsuit-

able for safety-critical applications.9

In clinical practice, expert clinicians consult colleagues or literature 

when confronted with complex cases that carry diagnostic uncertainty, 

which is then addressed through re-evaluation and consensus. Accord-

ingly, it is highly desirable for deep learning algorithms employed in CIE 

to report some measure of uncertainty along with their diagnostic or pre-

dictive output so that equivocal cases can be re-evaluated by an experi-

enced cardiologist.

For any diagnostic or predictive model, there are two distinct causes 

for the uncertainty of its prediction. These two are referred to as alea-

toric and epistemic uncertainty (Supplementary Figure 1).10 Aleatoric un-

certainty arises from noise inherent in the data, such as high-frequency 

noise, lead reversals, baseline drift, or borderline cases present in the 

ECG recording, and can therefore not be reduced by further data collec-

tion. Alternatively, epistemic uncertainty is caused by a lack of knowledge 

from the algorithm, which for instance has not been exposed to a specific 

(disease) pattern during training. Epistemic uncertainty can therefore be 

reduced by further exposure of the model to additional data. Both types 

of uncertainty influence the confidence associated to a model’s output 

and several different approaches exist to estimate aleatoric and epistem-

ic uncertainty. However, to the best of our knowledge, none of these have 

been applied to DNN-based CIE.11

In this study, we aimed to systematically investigate the feasibility 

and performance of multiple uncertainty estimation methods for deep 

learning-based ECG analysis across different local and publicly available 

datasets and tasks. Additionally, we show which methods are the most 

useful to improve the clinical value of these algorithms through a clinical 

simulation.
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Methods

Training data acquisition 
Three 12-lead ECGs datasets were used to evaluate the uncertainty esti-

mation methods. The UMCU-Triage and UMCU-Diagnose datasets were 

used to compare methods between an easier (UMCU-Diagnose) and 

challenging (UMCU-Triage) task. The publicly available CPSC2018 data-

set was employed to increase the reproducibility of our experiments, and 

to compare results between a small (CPSC2018) and large (UMCU-Dia-

gnose) dataset. The UMCU-Triage and UMCU-Diagnose datasets contain 

standard 12-lead ECGs acquired between January 2000 and August 2019 

on all non-cardiology wards and outpatient clinics, the Intensive Care Unit 

and the Emergency Department of the University Medical Center Utrecht 

(UMCU, Utrecht, the Netherlands). The ECGs were acquired using a Ge-

neral Electric MAC 5500 (GE Healthcare, Chicago, IL, United States) and 

raw 10 second 12-lead ECG data waveforms were utilized. Extracted data 

were de-identified in accordance with the EU General Data Protection Re-

gulation and written informed consent was waived by the ethical commit-

tee. All ECGs were interpreted by a cardiologist or cardiologist-in-training 

as part of the regular clinical workflow, and structured diagnosis labels 

were extracted from free-text interpretations using a text-mining algori-

thm described previously.3 The CPSC2018 dataset was described in de-

tail elsewhere and contains 12-lead ECGs acquired at 11 different hospitals 

across China.12

Training data labelling
The UMCU-Triage DNN performs a comprehensive ECG triage task and 

classifies ECGs into one of four distinct triage categories based on how 

promptly a cardiologist must be consulted: normal (no consultation neces-

sary), abnormal not acute (low priority consultation), abnormal subacute 

(moderate priority consultation) and abnormal acute (high priority con-

sultation). The ECG diagnoses and their corresponding triage categories 

were described before.3 The CPSC2018 and UMCU-Diagnose datasets 

were used for a specific ECG diagnosis classification task and were an-

notated with 8 ECG diagnoses: normal, atrial fibrillation (AF), left bundle 

branch block (LBBB), right bundle branch block (RBBB), premature atrial 

contraction (PAC), premature ventricular contraction (PVC), ST-segment 

depression (STD) and ST-segment elevation (STE).

Validation data acquisition
The UMCU-Triage dataset was split into training and validation sets in a 

95:5% ratio at the individual patient-level. The independent test set consi-

sted of 984 randomly sampled ECGs from different patients, annotated by 

a panel of 5 practicing senior electrophysiologist-cardiologists.3 All ECGs 

were interpreted by two blinded annotators, and, in case of disagree-

ment, a third annotator was consulted. A majority vote policy was used to 

get the final triage class. All patients in the test set were excluded from 

the training and validation datasets. The UMCU-Diagnose dataset was 

trained and tested using a random train/validation/test split of 90:5:5% 

on the patient-level. The CPSC2018 data was divided according to a 

90:10% train/validation split, and testing was performed with the official 

CPSC2018 test data which contains 300 ECGs.11

Deep neural network architecture
The base DNN architecture used in all experiments was based on an 

Inception Residual Network, which was described before by Van de Leur 

et al.3 This model consists of 37 dilated single-dimensional convolutional 

layers, which convolve along the time-axis of the ECG (Supplementary 

Figure 2). The models were trained using the Adam optimizer with a le-

arning rate of 0.0005.13  Training was performed for 20 epochs, using 

mini-batches of size 128. To counteract class-imbalance in the data, the 

focal loss was used as the loss function with focusing parameter set to .14 

Complementary architecture details are provided in the Supplementary 

Methods.
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Uncertainty estimation 
Four methods for epistemic uncertainty, two methods for aleatoric uncer-

tainty and their possible combinations were compared. The epistemic 

methods compared were: Monte Carlo dropout (MCD), Bayesian neural 

network with variational inference (VI), ensemble (ENS) and snapshot en-

semble (SSE).15–19 The aleatoric methods compared were: auxiliary output 

(AUX) and Bayesian decomposition (BD).10,20,21 The estimation of epistemic 

uncertainty in all methods works in a similar way: [1] multiple predictions 

are obtained for a single ECG by training multiple networks (ENS and SSE) 

or by sampling from the same network (VI and MCD), [2] the class with 

the highest mean probability is selected and [3] the variance over the 

probabilities for that class is used as the measure for uncertainty. Aleato-

ric uncertainty is either modelled directly using an auxiliary output (either 

independently or combined with ENS, SSE and MCD) or Bayesian decom-

position of the output of a Bayesian network (VI). Thus, for all methods, we 

get a new probability measure (the mean of the probabilities), referred 

to as the confidence, and an extra measure of uncertainty (the variance 

over the probabilities). An overview of the methods is given in Table 1 

and Figure 1, and the methods and implementation details are described 

extensively in the Supplementary Methods and Supplementary Table 1.

Next to regular evaluation on data the algorithm was trained on, 

the uncertainty methods were also evaluated for their ability to detect 

out-of-distribution (OOD) data, i.e. ECGs containing diagnoses that the 

network has never been seen before. This could happen when the al-

gorithm is applied in a new setting with a different disease distribution 

than in the training dataset. OOD data was created by excluding ECGs 

of a specific class during training and adding those ECGs to the test set. 

The OOD classes were ECGs with acute arrhythmias (such as ventricular 

tachycardia) for UMCU-Triage (part of the abnormal acute class) dataset, 

and atrial fibrillation for UMCU-Diagnose and CPSC2018 datasets.

Clinical simulation
A clinical scenario was simulated where a DNN is applied in a clinical 

setting with different thresholds (Figure 2). In this simulation, every ECG 

is first classified by the DNN and the corresponding uncertainty estimate 

is obtained. Next, the results were split into a trusted and rejected group 

by applying a threshold based on the estimated uncertainty. This ensures 

that only ECGs with certain predictions are trusted, and uncertain ECGs 

can be then evaluated by a cardiologist. Performance of the trusted pre-

dictions was evaluated using the accuracy for every threshold. For the 

OOD setting, the influence of the threshold on the rate of rejection of the 

OOD class was visualized. The clinical simulation was performed using 

the same test sets as the other experiments.

Correspondence with cardiologist’s lack of agreement
We investigated whether predictions regarding ECGs which the uncer-

tainty estimation methods marked as uncertain, corresponded with the 

ECGs on which cardiologist’s diagnoses differed. A unique opportunity 

to perform this evaluation was found in the UMCU-Triage test set since it 

contains annotations from multiple cardiologists. The agreement betwe-

en the cardiologists was used as a proxy for their diagnostic certainty, 

which was then compared to the total estimated uncertainty of the DNN 

on the same ECGs.

Statistical analysis
For each base network, discriminatory performance was evaluated using 

the macro-averaged one-vs-one area under the receiver operating cha-

racteristic curve (AUC). Base network calibration was assessed using cali-

bration plots. The uncertainty estimation methods were evaluated based 

on ranking, calibration and robustness against OOD data, followed by 

a clinical simulation in which uncertain predictions were excluded. The 

evaluation metrics are described below.

Ranking is concerned with the ordering of uncertainties and evalu-

ates whether high certainty predictions align with high accuracy. Ranking 

was measured using the Area Under the Confidence-Oracle error (AUCO) 

metric (also referred to as Area Under the Sparsification Error curve).22,23 

The AUCO compares the theoretical best possible ordering based on the 

obtained Brier score to the ordering based on the estimated uncertain-

ty, which are called oracle-error and confidence-error, respectively. The 

AUCO is then the area between the oracle-error and confidence-error 
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curves, which measures the difference between the perfect ordering and 

the ordering made by the uncertainty estimation method.

In contrast to ranking, calibration looks at the actual value of the esti-

mated confidence individually, and tests whether the estimates are over- 

or underconfident. To measure calibration, a calibration plot was created 

by splitting the mean maximum Softmax probabilities into ten bins, and 

calculating the accuracy over each bin. A perfectly calibrated model out-

puts probabilities that match up with the accuracy and would therefore lie 

on the diagonal. Probabilities above or below the diagonal are referred 

to as overconfident or underconfident, respectively. Calibration was mea-

sured using the Expected Calibration Error (ECE), which quantifies the dif-

ference on the calibration plot between the model’s confidence and the 

perfect diagonal.24

The difference in the estimated uncertainty between the ECG where 

the cardiologists agreed and disagreed was assessed using the median 

and interquartile range (IQR) and Mann Whitney U test, as the data was 

not normally distributed. These were evaluated for the total UMCU-Triage 

test set and in a per-class fashion. A p-value below 0.05 was considered 

statistically significant. 

Figure 1.
Overview of the 

uncertainty estimation 
concept and the 

epistemic uncertainty 
estimation methods. 

All methods work 
similarly to human 
uncertainty (in the 

top box, illustrated as 
several brains), where 

there are multiple 
reviewers interpreting 

the same ECG.
The uncertainty is 

then calculated as the 
variance over these 
different predictions 

for the same ECG. 
With DNNs multiple 

predictions can 
be achieved using 

ensembles (i.e. 
training the same 
network multiple 

times), MC dropout 
(i.e. removing some 

nodes randomly 
during prediction) or 
variational inference 

(i.e. sampling from 
the same network 
with distributions 

as weights multiple 
times). 

0.9 0.8 0.3

1 0.7 0.4

0.8 0.6 0.4

1 1 0

Human uncertainty

Ensemble uncertainty

MC dropout uncertainty

Variational inference uncertainty

Neurons with 
different activations

Connections with
different weights

0.9 Output neuron with
probability of y

Connection with
distribution as weight 

[                        ]Var = uncertainty
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METHOD DESCRIPTION

Monte Carlo
dropout (MCD)

Ensemble (ENS)

Variational
Inference (VI)

Dropout is kept on during test time, thereby 
creating a different dropout mask of the network 
every time a prediction is made. Through ma-
king multiple predictions on the same input ECG 
with differing dropout masks, varying predictions 
are obtained. The variance within these predi-
ctions is the estimated epistemic uncertainty.
Simple to implement and can be applied to all 
existing models without retraining given that 
dropout was used.

EP
IS

TE
M

IC

Weights of the neural network are replaced 
by distributions, creating a Bayesian neural 
network. These distributions can be sampled to 
obtain a set of weights, which can be used to 
make predictions. Once trained, the distributions 
are sampled multiple times to obtain multiple 
sets of weights, which are used to make multiple 
predictions on the same input ECG. The va-
riance within these predictions functions as the 
estimated epistemic uncertainty. 
Theoretically sound approach to uncertain-
ty but requires adjustment of network and 
training logic and training can be difficult and 
time-intensive.

Multiple the same neural networks are randomly 
initialized and trained on the same data, resul-
ting in an ensemble of neural networks.
After training, each ensemble member predicts 
on the same input ECG. The predictions are ave-
raged, and the variance within the predictions is 
the estimated epistemic uncertainty.
Simple to implement and can be applied to all 
existing models but training logic needs slight 
changes and training demands more time.

DESCRIPTION

Snapshot ensemble
(SSE)

Auxiliary output
(AUX)

Bayesian
decomposition
(BD)

Dropout is kept on during test time, thereby 
creating a different dropout mask of the network 
every time a prediction is made. Through ma-
king multiple predictions on the same input ECG 
with differing dropout masks, varying predictions 
are obtained. The variance within these predi-
ctions is the estimated epistemic uncertainty.
Simple to implement and can be applied to all 
existing models without retraining given that 
dropout was used.

EP
IS

TE
M

IC
AL

EA
TO

RI
C

The auxiliary output method adds an additional 
output neuron to the last layer of the neural 
network for each class. These neurons are 
tasked with estimating the aleatoric uncertainty. 
The neurons are incorporated into the loss fun-
ction during training, and thereby directly learn 
the aleatoric uncertainty present in the data. 
Once trained, the value of the auxiliary output 
neuron corresponding to the predicted class is 
the estimated aleatoric uncertainty.
Possibility to add aleatoric uncertainty esti-
mation to non-Bayesian networks. Simple to 
implement, requires changing the last layer of 
the architecture.

The Bayesian decomposition method works with 
the variational inference method. It decomposes 
the predictive distribution of a Bayesian neural 
network into an epistemic and aleatoric part 
directly.
Possibility to add aleatoric uncertainty estima-
tion to Bayesian networks. Simple to imple-
ment when the network is already Bayesian.

Table 1.
Description of 

evaluated uncertainty 
estimation methods.
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Results 

Data distribution
The UMCU-Triage and -Diagnose datasets contained 316.987 and 194.880 

ECGs, respectively, while the CPSC2018 dataset contained 6.877 ECGs. 

The class distribution in the different datasets is shown in Table 2. The 

UMCU-Triage test set consisted of 984 ECGs of unique patients of which 

418 were normal, 410 abnormal not acute, 80 abnormal subacute and 76 

abnormal acute. The UMCU-Diagnose and CPSC2018 test set consisted 

of 10.089 and 300 ECGs respectively, with similar distribution to Table 2.

Base network comparison 
The mean AUCs of the base DNN and models with uncertainty estimation 

methods on in-distribution setting were 0.95 ± 0.0044 for the UMCU-Tria-

ge dataset, 0.99 ± 0.0016 for the UMCU-Diagnose dataset and 0.92 ± 

0.0159 for CPSC2018 dataset. This shows that the models have similar 

performance and can therefore be compared fairly. In Figure 3, the cali-

bration of the base network on all datasets is shown. The base networ-

k’s probability was up to 15% underconfident on the UMCU-Triage and 

UMCU-Diagnose datasets in the in-distribution setting and up to 30% 

overconfident on both the in- and OOD setting for the CPSC2018 dataset.

Ranking
The VI model obtained the best ranking score among the models with 

a single uncertainty estimation method on the in-distribution setting of 

UMCU-Triage (Table 3). When combined with BD, ranking improved si-

gnificantly, and VI+BD obtained the best ranking scores on both in- and 

OOD setting. The best performing uncertainty estimation methods for 

UMCU-Diagnose were VI, ENS, VI+BD and ENS+AUX for the in-distribu-

tion, and MCD for the OOD setting. For CPSC2018 the ENS model obtai-

ned the lowest AUCO on in-distribution setting, and VI+BD on the OOD 

setting. When comparing between in and OOD setting, the AUCO for 

OOD data was generally higher than in in-distribution setting. In Table 

3, all AUCO scores are displayed. The ranking plots for all datasets are 

displayed in Supplementary Figures 3-5.

Calibration
The ECEs for all uncertainty estimation methods were lower than the 

base network, with the auxiliary output method on the CPSC2018 dataset 

being the only exception (Table 4). On UMCU-Triage, the best calibra-

ted method was the SSE+AUX for both in-distribution and OOD setting. 

For UMCU-Diagnose, the lowest ECEs were obtained by the VI, AUX and 

VI+BD methods on in-distribution setting, and MCD+AUX, ENS+AUX and 

SSE+AUX on OOD setting. For the CPSC2018 dataset, SSE, ENS+AUX 

and SSE+AUX were the most calibrated methods on in-distribution, and 

the ENS+AUX model obtained the lowest ECE on OOD setting. Table 4 

shows the calibration results and calibration plots for all methods and da-

tasets are shown in Supplementary Figures 6-8.

Clinical simulation
The clinical simulation uncertainty threshold plot for the UMCU-Triage da-

taset in the in-distribution setting is displayed in Figure 4. The results show 

that exclusion of uncertain ECGs improves the accuracy of all models. The 

VI+BD model had the steepest upward slope, and thus excluded the un-

certain ECGs the fastest, thereby increasing overall model accuracy at the 

highest rate. Within Table 5, the accuracies of the models with uncertainty 

thresholds applied at 25%, 50% and 75% are displayed for the in-distribu-

tion setting, and in Table 6 for the OOD setting. The accuracy of all models 

increased when estimated uncertain samples were removed. 

In Figure 5, the normalized per-class thresholding plots for the VI+BD 

and ENS+AUX models on the UMCU-Diagnose dataset are shown. The 

ECGs containing atrial fibrillation are of average uncertainty in the in-distri-

bution setting, but in the OOD setting where the models have never seen 

atrial fibrillation before, the ECGs with atrial fibrillation are marked with high 

uncertainty, and thereby removed at the fastest rate. Plots for the other 

datasets are shown in Supplementary Figures 9 and 10.
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Correspondence with cardiologist’s lack of agreement
The cardiologists showed moderate agreement on the triage class in the 

UMCU-Triage expert test set and agreed on 736 of the 984 ECGs (75%, 

Cohen’s kappa 0.60, p < 0.001). The highest agreement was observed in 

the normal class (77%) and the lowest in the abnormal acute class (61%). 

The total certainty was lower for ECGs in which cardiologists’ annotations 

did not agree (median 39%, IQR 43%) as compared to ECGs in which 

cardiologists did agree (median 55%, IQR 50%, overall p < 0.001). The 

certainty was the highest for the normal class (median 73%, IQR 40%) and 

the lowest for the abnormal acute class (median 22%, IQR 26%). The con-

sensus of the panel of cardiologists is plotted against the median total 

uncertainty per class for the VI+BD method in Figure 6.

BA
Figure 3.
Calibration of the base network 
in the in-distribution (A) and out-
of-distribution (B) setting for all 
datasets.
In a calibration plot the predicted 
probability or confidence of the 
network is grouped into ten bins 
from low (i.e. 20-30%) to high (i.e. 
90-100%). For all these bins the 
accuracy in that bins is calculated. A 
perfectly calibrated model outputs 
confidences that match up exactly 
with the accuracy. A model which 
predicts higher probabilities than 
the accuracy is overconfident, 
which can be observed by a line 
that falls under the diagonal. 
An underconfident model is the 
opposite and lies above the 
diagonal. The base models without 
uncertainty estimation are op to 
30% over- or underconfident. 

0 20 40 60 80 100

Figure 4.
Clinical simulation 
with accuracies of 

predictions as a 
function of excluding 

uncertain ECGs on the 
in-distribution setting 

of the UMCU-Triage 
dataset.

The threshold 
percentage 

corresponds to 
the percentage of 
data that needs to 

be evaluated by 
a physician after 

exclusion.  Through 
excluding uncertain 

ECGs, accuracy of 
all models improved. 

The VI+BD model 
had the steepest 

upward slope, and 
thus excluded the 

uncertain ECGs 
the fastest, thereby 

increasing overall 
model accuracy at 

the highest rate. 
MCD: Monte-

Carlo Dropout, VI: 
Variational Inference, 
ENS: Ensemble, SSE: 
Snapshot Ensemble, 

AUX: Auxiliary 
output, BD: Bayesian 

decomposition.
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A B

C D

Figure 5.
Normalized per-class thresholding plots of the 
VI+BD (A, B) and ENS+AUX (C, D) models on the 
UMCU-Diagnose dataset.
The first column (A, C) is for the in-distribution 
setting, the second column (B, D) is for the 
out-of-distribution setting. Classes with high 
uncertainty are removed first and have a steep 
downward slope. In the in-distribution plots (A, C), 
the model was trained on all classes, including 
atrial fibrillation (AF). These plots show that 
the algorithm is certain about prediction atrial 
fibrillation, as these samples are excluded slower 
than other classes. In the out-of-distribution plots 
(B, D), the algorithm was trained on a dataset 
that contained no atrial fibrillation ECGs. These 
plots show that the model is now very uncertainty 
about this unseen class, as it excludes the atrial 
fibrillation ECGs first. AF: atrial fibrillation, I-ABV: 
first degree atrioventricular block, LBBB: left 
bundle branch block, RBBB: right bundle branch 
block, PAC: premature atrial contraction, PVC: 
premature atrial contraction, STD: ST-depression, 
STE: ST-elevation.
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Figure 6. 
Correspondence of uncertainty with 

cardiologist’s lack of agreement.
The ECGs in the expert test set 

of UMCU-Triage are grouped 
by consensus between two 

cardiologists and compared with 
the estimated uncertainty for these 

ECGs, both per-class and overall. 
The algorithm is more certain about 

ECGs where the cardiologists 
agreed. Moreover, the algorithm 
is most certain about the normal 

ECGs and least certain about the 
abnormal, acute ECGs, which is also 
the smallest class. ** p < 0.01, **** p < 

0.0001, ns: not significant.
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CLASS # %

Normal

Normal

Abnormal, subacute

ST-segment depression

Abnormal, not acute

Atrial fibrillation

First-degree atrioventricular block

Left bundle branch block

Right bundle branch block

Premature atrial contraction

Premature ventricular contraction

Abnormal, acute

ST-segment elevation

Total

Total

43.78

56.35

138774

109787

7.29

6.85

23113

13538

44.06

10.30

4.32

3.23

6.96

4.75

4.75

139656

20073

8411

6290

13568

9258

9580

4.87

2.24

15444

4375

316987

194880

U
M

C
U

 T
RI

AG
E

U
M

C
U

-D
IA

G
N

O
SE

CLASS # %

Normal

ST-segment depression

Atrial fibrillation

First-degree atrioventricular block

Left bundle branch block

Right bundle branch block

Premature atrial contraction

Premature ventricular contraction

ST-segment elevation

Total

13.35918

12.00825

15.97

10.24

3.01

24.65

8.08

9.77

1098

704

207

1695

556

672

2.94202

6877

C
PS

C
20

18

Table 2.
Overview of dataset 
characteristics.
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METHOD UNCERTAINTY 
TYPE

in-dist. OOD

None

MCD + AUX

-

total

0.05

0.09

0.07

0.12

VI

ENS + AUX

epistemic

total

0.08

0.08

0.10

0.10

SSE epistemic 0.11 0.10

MCD

VI + BD

epistemic

total

0.11

0.06

0.15

0.07

ENS

SSE + AUX

epistemic

total

0.11

0.12

0.10

0.10

AUX aleatoric 0.10 0.09

UMCU-TRIAGE

Table 3.
Ranking performance 
measured using area 
under the confidence-
oracle error (AUCO).
The AUCO of individual 
epistemic uncertainty 
estimation methods 
is improved when 
combined with a method 
for estimating aleatoric 
uncertainty. OOD: out-
of-distribution. MCD: 
Monte-Carlo Dropout, VI: 
Variational Inference, ENS: 
Ensemble, SSE: Snapshot 
Ensemble, AUX: Auxiliary 
output, BD: Bayesian 
decomposition.

in-dist. in-dist.OOD OOD

0.02

0.03

0.04

0.04

0.21

0.18

0.28

0.31

0.02

0.02

0.04

0.04

0.20

0.16

0.17

0.26

0.03 0.04 0.24 0.28

0.03

0.02

0.03

0.04

0.15

0.20

0.20

0.15

0.02

0.05

0.04

0.04

0.14

0.26

0.22

0.42

0.07 0.08 0.18 0.23

UMCU-DIAGNOSE CPSC 2018
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METHOD UNCERTAINTY 
TYPE

in-dist. OOD

None

MCD + AUX

-

total

0.11

0.07

0.10

0.07

VI

ENS + AUX

epistemic

total

0.07

0.08

0.08

0.07

SSE epistemic 0.05 0.04

MCD

VI + BD

epistemic

total

0.08

0.07

0.05

0.08

ENS

SSE + AUX

epistemic

total

0.06

0.03

0.07

0.03

AUX aleatoric 0.04 0.05

UMCU-TRIAGE

Table 4.
Calibration measured in Expected 
Calibration Error.
The acquired Expected Calibration 
Errors are lower for models with 
uncertainty estimation compared to 
the base model without uncertainty 
estimation. MCD: Monte-Carlo 
Dropout, VI: Variational Inference, ENS: 
Ensemble, SSE: Snapshot Ensemble, 
AUX: Auxiliary output, BD: Bayesian 
decomposition.

in-dist. in-dist.OOD OOD

0.09

0.03

0.03

0.04

0.17

0.14

0.25

0.24

0.02

0.04

0.06

0.04

0.09

0.06

0.11

0.06

0.04 0.04 0.06 0.09

0.06

0.02

0.04

0.06

0.07

0.09

0.12

0.11

0.03

0.04

0.04

0.04

0.09

0.06

0.18

0.07

0.02 0.05 0.18 0.26

UMCU-DIAGNOSE CPSC 2018
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METHOD

MCD + AUX

0%

0.82

25% 50%

0.85 0.89

75%

0.95

VI

ENS + AUX

0.80

0.82

0.85 0.91

0.87 0.93

0.98

0.96

SSE 0.81 0.83 0.88 0.93

MCD

VI + BD

0.82

0.80

0.86 0.88

0.88 0.93

0.90

0.98

ENS

SSE + AUX

0.81

0.78

0.85 0.88

0.81 0.87

0.90

0.94

AUX 0.81 0.84 0.88 0.96

UMCU-TRIAGE

Table 5.
Accuracy scores for non-
thresholded (0%) and 
thresholded (25%, 50%, 75%) 
predictions on all datasets on 
in-distribution setting.
Predictions are thresholded by 
removing 25%, 50% and 75% of 
the estimated most uncertain 
samples. Model accuracy 
increases for all methods and 
dataset when uncertain samples 
are removed. MCD: Monte-
Carlo Dropout, VI: Variational 
Inference, ENS: Ensemble, 
SSE: Snapshot Ensemble, AUX: 
Auxiliary output, BD: Bayesian 
decomposition.

0.92 0%

0.92 0.720.96 0.790.99 0.85

75% 75%25% 25%50% 50%

1.00 0.93

0.92 0.700.97 0.740.99 0.77

0.92 0.730.98 0.770.99 0.83

1.00 0.87

1.00 0.95

0.92 0.660.96 0.650.99 0.711.00 0.73

0.91 0.690.96 0.760.98 0.88

0.91 0.700.98 0.730.99 0.79

1.00 0.93

1.00 0.89

0.91 0.730.97 0.820.99 0.91

0.91 0.660.95 0.670.97 0.75

1.00 0.93

0.99 0.81

0.92 0.710.95 0.750.95 0.870.95 0.93

UMCU-DIAGNOSE CPSC 2018



128 | Chapter 4 Uncertainty estimation of DNNs for ECG analysis | 129

METHOD

MCD + AUX

0%

0.80

25% 50%

0.84 0.89

75%

0.92

VI

ENS + AUX

0.81

0.81

0.86 0.90

0.88 0.90

0.93

0.93

SSE 0.80 0.85 0.90 0.93

MCD

VI + BD

0.80

0.81

0.82 0.83

0.88 0.93

0.87

0.97

ENS

SSE + AUX

0.82

0.79

0.87 0.89

0.83 0.90

0.93

0.95

AUX 0.80 0.85 0.91 0.96

UMCU-TRIAGE

Table 6.
Accuracy scores for non-
thresholded (0%) and 
thresholded (25%, 50%, 75%) 
predictions on all datasets on 
out-of-distribution setting.
Predictions are thresholded 
by removing 25%, 50% and 
75% of the estimated most 
uncertain samples. Model 
accuracy increases for all 
methods and dataset when 
uncertain samples are removed, 
except for the model with 
SSE+AUX. MCD: Monte-
Carlo Dropout, VI: Variational 
Inference, ENS: Ensemble, 
SSE: Snapshot Ensemble, AUX: 
Auxiliary output, BD: Bayesian 
decomposition.

0% 0%

0.82 0.570.94 0.630.99 0.71

75% 75%25% 25%50% 50%

0.99 0.81

0.81 0.610.93 0.700.98 0.79

0.83 0.610.93 0.600.99 0.62

1.00 0.93

1.00 0.84

0.82 0.560.92 0.560.98 0.611.00 0.77

0.82 0.590.94 0.660.99 0.80

0.81 0.610.93 0.720.99 0.84

1.00 0.88

1.00 0.93

0.83 0.620.92 0.690.98 0.83

0.82 0.580.93 0.570.98 0.57

1.00 0.88

0.99 0.53

0.82 0.600.92 0.680.95 0.780.96 0.85

UMCU-DIAGNOSE CPSC 2018
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Discussion 

This study is the first to systematically investigate the feasibility and perfor-

mance of uncertainty estimation methods for the automated classification 

of ECGs using DNNs. Our calibration results documented that the regular 

DNN is up to 30% either over- or underconfident, stressing the need for 

adequate uncertainty estimation (Figure 3). We demonstrated how im-

plementing uncertainty estimation improves both calibration and ranking 

across datasets with differing sizes and tasks. The proposed methods 

therefore provide an improved and better calibrated probability measure 

together with an additional uncertainty measure. While pressure testing 

this new uncertainty measure in a safe and insightful clinical simulation, 

we showed that by thresholding the uncertainty estimates and thereby 

rejecting uncertain ECGs markedly improves accuracy in the remaining 

data. Furthermore, out-of-distribution ECG diagnoses that the algorithm 

has not seen during training are rejected faster. Finally, these uncertain-

ties were shown to significantly correlate with the disagreement that exi-

sts between cardiologists in clinical ECG interpretation. 

When implementing new technologies into clinical practice, knowing 

its limitations is of the utmost importance, especially if the technology 

concerns ‘black-box’ algorithms such as DNNs. Surprisingly, while there 

is a rapid growth of publications on DNNs that perform ECG analyses, 

we found none that included uncertainty estimations. When training a 

DNN for a specific task such as ECG interpretation, the algorithm is con-

stitutionally forced to accept every input and assign it to an output, even 

in the cases where the algorithm’s estimations carry great uncertainty. 

The results from the DNNs without uncertainty estimation in this study 

showed that the network was underconfident on the large UMCU-Triage 

and UMCU-Diagnose dataset, while overconfident on the relatively small 

CPSC2018 dataset. Such discrepancies, if left unchecked, could potential-

ly lead to unfavourable or potentially dangerous situations when applied 

in a clinical setting where a patient could be wrongly diagnosed by a DNN 

prediction with high Softmax probability. These findings demonstrate that 

out-of-the-box DNN predictions should not be blindly trusted without es-

timating their prediction uncertainty. In our opinion, incorporating the es-

timation of the uncertainty of DNN predictions is therefore an essential 

prerequisite when applying an algorithm into clinical practice.

Uncertainty estimation techniques
The variety of estimation methods employed (and their combinations) al-

lowed us to extensively investigate their comparative performance. In the 

ranking results for the UMCU-Triage dataset, we demonstrated that when 

comparing models with only epistemic uncertainty estimation methods to 

models with both epistemic and aleatoric uncertainty estimation, the ran-

king improves for the latter. Therefore, it seems that aleatoric uncertainty 

is beneficial to the ranking score on a large dataset such as UMCU-Triage. 

This is in line with earlier work stating that aleatoric uncertainty is more im-

portant for large datasets because all the epistemic uncertainty has been 

taken away through providing the network with enough training data.10 It 

is therefore important to model aleatoric uncertainty when dealing with 

large datasets. Regarding the calibration results, we found that the ECEs 

for all networks with uncertainty estimation methods were lower than the 

ECEs of the baseline network. Thus, calibration performance improved 

noticeably in all the networks that employed uncertainty estimation. The-

se findings clearly demonstrate the benefits of modelling uncertainty for 

the calibration of a DNN. When comparing the calibration scores on the 

small CPSC2018 dataset, we observed that the ECE of the AUX model 

was the largest out of all models. The only model with uncertainty esti-

mation that performed worse than the base network was thus a model 

that only modelled aleatoric uncertainty, whereas all other models that 

have epistemic uncertainty estimation improved upon the base network. 

This strongly suggests that it may be more important to model epistemic 

uncertainty for small datasets because there is still much epistemic uncer-

tainty present after training, which is confirmed in earlier work.10

Therefore, through our experiments, we found that epistemic uncer-

tainty should be modelled for small datasets and aleatoric uncertainty for 



132 | Chapter 4 Uncertainty estimation of DNNs for ECG analysis | 133

large datasets. Preferably however, both should be modelled, which is why 

we only consider models that estimated both types of uncertainty. From 

these models, the MCD+AUX model displayed large overconfidence on 

the OOD setting of CPSC2018 (as shown in Table 4) and is therefore not 

recommended. The SSE+AUX model’s showed poor ranking in all datasets 

in both the in-distribution and OOD datasets and this model is therefore also 

not recommended. Overall, the VI+BD and ENS+AUX models performed 

best for improving ranking and calibration across datasets and tasks in both 

the in-distribution and OOD setting and are therefore recommended as a 

starting point in similar ECG diagnosis settings. However, further research is 

needed to confirm the generalizability of our results in other settings.

Our findings for the ENS method align with recent research where 

this method also performed best out of the tested uncertainty estimation 

methods.  However, the results for the VI method differ with these studies, 

that found VI to perform best on small datasets, but was outperformed by 

other methods on the large ImageNet dataset.11,25 We believe the differ-

ence in outcomes is due to the fact that all our datasets are an order of 

magnitude smaller than ImageNet, and we therefore do not observe the 

same effect. Finally, one study recommended the MCD method, however 

they did not perform testing on OOD data, which is where we found the 

method to be overconfident.11

Clinical simulation
In our analyses, accuracy of all models increased when estimated uncer-

tain samples were removed (Tables 5 and 6, Figure 4). These findings 

show that the estimated uncertainty can be used as a threshold, so only 

certain samples are ultimately classified by an actually accurate model. 

Such an implementation is highly attractive in a clinical setting, so that 

the ECGs with high estimated uncertainty (which the network is prone to 

misdiagnose), can be passed on to a cardiologist for further analysis. The 

thresholds for when to trust the network and when to consult a cardiolo-

gist can be set according to the required accuracy for the specific task or 

setting. Employing a clinical workflow with such an intermediate “quality 

control” structure is envisioned to greatly reduce clinical workload, while 

maintaining or improving the quality of diagnoses.

Both the recommended VI+BD and ENS+AUX methods perform well 

in quickly increasing accuracy in the group with trusted classifications 

when the threshold increases, both in an in-distribution and OOD setting 

(Tables 5 and 6, Figure 4). For the UMCU-Diagnose dataset’s in-distribu-

tion setting, an uncertainty threshold of only 25% results in a near-perfect 

accuracy of 98% in the trusted group (Table 5). For the UMCU-Triage task, 

which is more difficult than predicting a single diagnostic statement, we 

observed that 75% of the ECGs needed to be excluded to gain the same 

near-perfect accuracy. This indicates that the network is more uncertain 

about this task. The same holds for the CPSC2019 dataset, where the 

high uncertainty is likely due to the small sample size. The thresholded 

OOD results revealed that after excluding 25% of uncertain samples, most 

of the obtained accuracies returned to normal in-distribution levels, hint-

ing that the bulk of the OOD data had been excluded (Table 6). This ex-

hibits the possibility of excluding new or rare diseases present in the ECG 

which the DNN had not seen before. 

After training, an uncertainty estimation method is expected to ascribe 

high uncertainty to predictions on the unseen OOD class. When focussing 

on the OOD class specifically, the per-class thresholding plots (Figure 

5) for the UMCU-Diagnose dataset show that the VI+BD and ENS+AUX 

methods estimated a higher uncertainty for the OOD ECGs compared to 

in-distribution ECGs. This finding suggests that the uncertainty estimation 

methods correctly detected the OOD ECGs, by ascribing them high un-

certainty. However, the uncertainty does not increase further when the 

OOD ECGs already belong to the most uncertain class, as observed for 

the UMCU-Triage dataset in Supplementary Figure 9. Furthermore, the 

OOD ECGs are not always identified as most uncertain, as is the case for 

the ENS+AUX method on the CPSC2018 dataset shown in Supplemen-

tary Figure 10. However, when comparing the obtained AUCO scores 

between in-distribution and OOD setting, it was also observed that the 

AUCOs for OOD setting are generally higher, suggesting that introduc-

ing OOD data can degrade ranking. The tested uncertainty estimation 

methods are therefore not completely robust against OOD data and this 

remains a point of improvement.
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Correspondence with cardiologist’s lack of agreement
Most interestingly, uncertainty was shown to significantly correlate with 

the lack of diagnostic agreement encountered even between experien-

ced cardiologists when interpreting an ECG. This seems to suggest that 

the cardiologists and DNNs may struggle with the similar complex pat-

terns in challenging ECGs, either due to aleatoric uncertainty caused by 

noise or borderline cases inherent in the data, or through epistemic un-

certainty of ECGs with rare abnormalities. This notion represents a solid 

step towards confident clinical deployment based on the assurance that 

uncertainty estimation methods function as expected and align with car-

diologists on what is most worth their restricted clinical time.

Limitations
This study has several limitations to address. First of all, the test-sets of 

UMCU-Triage and CPSC2018 were small, and results on these datasets 

are therefore prone to stochasticity. Secondly, the OOD class on the 

UMCU-Triage test set only constituted 1.8% of the data, which complica-

ted the interpretation of the thresholding results. Thirdly, the ECGs in the 

CPSC2018 dataset are of varying length between 6 and 60 seconds. We 

extracted only the first 10-seconds and zero-padded ECGs which were 

shorter, which could potentially lead to missing features in the ECG. Four-

thly, experiments were performed on a single DNN architecture, which re-

duces the generalizability of the results towards other DNN architectures. 

Residual convolutional neural networks are, however, the most commonly 

used in DNN-based analysis of ECGs. 26

Clinical perspectives and future work
Our study demonstrated that through uncertainty estimation, we are co-

ming one step closer to applying DNNs in a clinical setting. Firstly, our stu-

dy dealt with multi-class classification, where only a single class is present 

in the ECG. However, in the real-world it often occurs that multiple dise-

ases are present within the same ECG. Therefore, it might be interesting 

to investigate uncertainty estimation for networks that accommodate for 

multi-label classification too. Secondly, we observed that the average 

estimated uncertainty differs per class, as displayed in Figure 6. This al-

lows for the setting of class-specific thresholds, because the estimated 

certainty for a common class lies much higher than for an uncommon 

class. Future studies should investigate whether novel uncertainty estima-

tion methods could account for these different uncertainty thresholds per 

class, as this might be necessary in specific clinical problems. Moreover, 

the effect of pretraining, oversampling or data augmentation on uncer-

tainty in imbalanced or small datasets should be investigated. Thirdly, a 

visualization of the estimated uncertainty could guide cardiologists into 

understanding why a DNN had difficulties interpreting ECGs. This could 

be performed using a technique such as Guided Grad-CAM.27 Finally, the 

estimated uncertainties could also be used to improve DNNs, which can 

be achieved in two phases. Firstly, it might be used during training as a 

guide towards parts of the data that the DNN is uncertain about, where 

cleaning or additional data is necessary. Secondly, during use in clinical 

practice an active learning workflow is possible, where uncertain ECGs 

are interpreted by a cardiologist and the DNN continuously improves by 

learning from these ECGs.
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Conclusion

In conclusion, this is the first study to apply and systematically investi-

gate uncertainty estimation techniques on DNN-based CIE. We demon-

strated the need for uncertainty estimation and showed that through its 

implementation, ECGs that a DNN would otherwise classify incorrectly 

can be excluded and passed on to a cardiologist for further review. Fur-

thermore, we found a strong correlation between estimated uncertainty 

and disagreement between cardiologists. This study shows the possibility 

of strengthening the application of DNNs in practice through uncertainty 

estimation and is an important step towards the clinical applicability of 

automated ECG diagnosis through deep learning.
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Abstract

Aims
Deep neural networks (DNNs) perform excellently in interpreting electrocardiograms (ECGs), 

both for conventional ECG interpretation and for novel applications such as detection of reduced 

ejection fraction (EF). Despite these promising developments, implementation is hampered by 

the lack of trustworthy techniques to explain the algorithms to clinicians. Especially, currently 

employed heatmap-based methods have shown to be inaccurate.

Methods and results
We present a novel pipeline consisting of a variational auto-encoder (VAE) to learn the 

underlying factors of variation of the median beat ECG morphology (the FactorECG), which are 

subsequently used in common and interpretable prediction models. As the ECG factors can be 

made explainable by generating and visualizing ECGs on both the model and individual level, 

the pipeline provides improved explainability over heatmap-based methods. By training on a 

database with 1.1 million ECGs, the VAE can compress the ECG into 21 generative ECG factors, 

most of which are associated with physiologically valid underlying processes. Performance of the 

explainable pipeline was similar to ‘black box’ DNNs in conventional ECG interpretation (AUROC 

0.94 vs 0.96), detection of reduced EF (AUROC 0.90 vs 0.91) and prediction of one-year mortality 

(AUROC 0.76 vs 0.75). Contrary to the ‘black box’ DNNs, our pipeline provided explainability on 

which morphological ECG changes were important for prediction. Results were confirmed in a 

population-based external validation dataset.

Conclusions
Future studies on DNNs for ECGs should employ pipelines that are explainable to facilitate 

clinical implementation by gaining confidence in artificial intelligence and making it possible to 

identify biased models.
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Introduction

The use of deep neural networks (DNNs) has led to tremendous improve-

ments in automated interpretation of electrocardiograms (ECGs).1 Recent 

studies have shown that DNNs achieve similar performance as cardiolo-

gists in tasks such as arrhythmia recognition and triage of ECGs.2,3 Even 

more striking, DNNs have been shown to diagnose disorders that were 

not yet recognized on the ECG, such as reduced ejection fraction and 

one-year mortality.4,5 Despite these promising developments, clinical im-

plementation is severely hampered by the lack of trustworthy techniques 

to explain the decisions of the algorithm to clinicians.6,7 Due to the ‘black 

box’ nature of most algorithms, and the limitations of current post-hoc 

explainability methods, the association between input and output remains 

unexplainable to humans.8 The lack of interpretability makes it difficult for 

clinicians to gain enough confidence to make clinical decisions based 

on these algorithms, and more importantly, impossible to identify biased 

or inaccurate models. These issues have already been acknowledged 

by the new European Union’s General Data Protection Regulation, that 

requires a ‘right to explanation’ for AI algorithms.9  

To improve explainability, several post-hoc explainability methods 

have been proposed, usually by providing heatmaps on top of the ECG. 

However, a major limitation of these methods is that they only provide 

the temporal location of ECG features important in making the diagno-

sis, but do not indicate the actual feature (e.g., when the QRS-complex is 

highlighted the feature could be R-wave height, QRS shape or something 

else completely).5,10,11 This makes that heatmaps are of limited explainable 

value for showing which morphological ECG changes were important for 

a specific prediction. Moreover, heatmap-based methods are only able 

to provide explainability on the level of an individual ECG, but not for the 

whole model. This combination makes them susceptible to confirmation 

bias, as we assume that the feature we think is important is also the one 

that was used in the few examples that were observed.6 Finally, recent 

studies have shown that saliency-based methods can be very unreliable 

in providing consequent annotations and can also show reassuring sa-

liency maps when a model is completely untrained, stressing the need 

for better approaches to explain output of DNNs.8,12,13 Therefore, instead 

of explaining the ‘black box’ after it was trained, the preferred way for al-

gorithms to produce trustworthy explanations is to develop pipelines that 

are explainable by design.8

We hypothesized that an ECG can be explained by a few underlying 

anatomical and (patho)physiological factors of variation. Variational au-

to-encoders (VAE) are generative networks that use the power of DNNs 

to learn to compress any ECG into a selected number of explanatory and 

independent factors. Moreover, they can reconstruct the ECG from these 

factors.14,15 In this study, we aimed to use a VAE to identify the underlying 

factors of variation in the ECG morphology and use them to develop an 

explainable pipeline for the interpretation of ECGs. Firstly, we investigate 

the underlying generative process of the learned factors by relating them 

to known ECG parameters and the most common conventional diagnos-

tic ECG statements. Secondly, we train and internally and externally vali-

date the explainable pipeline for use in the novel ECG use cases, detec-

tion of reduced ejection fraction and prediction of one-year mortality, and 

perform a comparison with current state-of-the-art ‘black box’ DNNs and 

conventional ECG algorithms.
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Methods

Study participants
The dataset consisted of all patients between 18 and 85 years of age 

with at least one ECG acquired in the University Medical Center Utrecht 

(UMCU) between July 1991 and August 2020. All data were de-identified 

in accordance with the EU General Data Protection Regulation and writ-

ten informed consent was not required by the UMCU ethical committee.

Data acquisition for training and validation of the VAE 
All resting 12-lead ECGs were exported from the MUSE ECG system 

(MUSE version 8; GE Healthcare, Chicago, IL, USA) in raw voltage format 

and converted to median beats as described by Van de Leur and Taha 

et al (2021).10 All ECGs that were deemed technically inadequate by ei-

ther the MUSE 12SL algorithm or interpreting physician were excluded 

from the analyses. No labels were used in the training of the unsupervi-

sed auto-encoder.

Data acquisition for training and validation of the 
‘black box’ DNNs and explainable pipelines
For training of the algorithms to detect conventional diagnostic ECG 

statements, we included a subset of ECGs that were obtained at all 

non-cardiology departments, as these ECGs were systematically an-

notated by a physician as part of the regular clinical workflow. We se-

lected the 35 most common diagnostic statements for training (i.e., sinus 

tachycardia or left bundle branch block, a complete overview can be 

found in the Supplementary Methods) and used 20% of the patients for 

hyperparameter optimization. For validation of the ECG interpretation 

models, an independent dataset comprising 1000 randomly selected 

ECGs of unique patients was annotated by a panel of 5 practicing 

electrophysiologists or cardiologists for all diagnostic statements as de-

scribed by Van de Leur et al (2020).3 A reduced set of the 35 diagnostic 

statements was tested, as some abnormalities did not occur in the test 

dataset. Moreover, the myocardial ischemia labels in different locations 

were combined.

To train and validate the algorithms to detect reduced ejection 

fraction (below 40%) and predict one-year mortality, we selected pa-

tients using the same approaches as Attia et al. and Raghunath et al., 

respectively.4,5 For the reduced ejection fraction model, patients with 

an ECG-echocardiogram pair (acquired within 14 days) were retrieved, 

the ejection fraction (EF) was dichotomized at 40% and patients were 

split in a 75:25 ratio on the patient level. For the test set only the first 

ECG-echocardiogram pair per patient was used, to avoid overrepresen-

tation of sicker patients with multiple pairs. For the one-year mortality 

model, all patients with at least one year of follow-up available for eval-

uation of all-cause mortality were selected and split in a 60:40 ratio on 

the patient level. For the test set, we randomly selection one ECG if the 

patient had multiple ECGs. Importantly, both train-test splits were made 

on the patient level, ensuring no overlap in patients between the sets. 

Detailed information on the data acquisition for all three tasks can be 

found in the Supplementary Methods.

For external validation of the VAE and the performance of the mod-

els for detection of reduced ejection fraction, we included individuals 

who underwent both cardiac magnetic resonance (CMR) imaging and 

12-lead ECG at the same time at the first imaging visit of the popula-

tion-based UK Biobank cohort (analysis performed under application 

number 74395). All 10 second 12-lead resting ECGs were acquired us-

ing a GE CardioSoft device at 500Hz and converted to median beats 

by the GE algorithm. Only individuals where the left ventricular ejection 

fraction was determined on the CMR using a manual analysis protocol 

by Petersen et al were included (UK Biobank return number 2541).16,17 

Details on the UK Biobank cohort, the CMR protocol and the manual 

CMR analysis protocol have been described before.17–19 
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Training and architecture of the VAE 
The VAE consists of three parts: the encoder, the latent space (with mul-

tiple continuous ECG factors, combined referred to as the FactorECG) 

and the decoder.14 The original 12-lead median beat ECG is entered into 

the encoder, that compresses the ECG to its FactorECG with 32 conti-

nuous factors. From those same factors, the ECG is reconstructed by 

the decoder, and the difference between the input and reconstructed 

ECG was used to train the model. The decoder and encoder are a 

standard convolutional neural network and the inverse of that neural 

network, respectively. A specific type of variational autoencoder was 

used, called the β-VAE, where an additional hyperparameter β is inclu-

ded in the loss term to learn disentangled factors, i.e., generative factors 

of variation that are independent of each other.15 The two most important 

hyperparameters in the β-VAE were the number of ECG factors and the 

β-value. For both, values of 8, 16, 32, 64 and 128 were evaluated. Consi-

dering that increasing the β-term results in higher reconstruction errors, 

we chose a β that resulted in a good trade-off between reconstruction 

error and adequate disentanglement in significant factors, which was 

assessed using the factor traversals. Moreover, increasing the number 

of ECG factors above 32 did not yield an increase in significantly con-

tributing factors (i.e., factors that encode variation), therefore this value 

was selected. A schematic overview of the technique can be found in 

Figure 1, while an animation of the approach is included as Supplemen-

tary Material. Detailed information on the training and architecture of the 

VAE can be found in the Supplementary Methods.

Training and explainability of the pipeline
To obtain an explainable pipeline for prediction or diagnosis, we com-

bined the following steps: (1) the median beat 12-lead ECGs were en-

coded in their FactorECG using the pretrained VAE encoder, (2) the 21 

significant ECG factors were entered into common interpretable stati-

stical models to perform the prediction or diagnosis task, and (3) the 

pretrained VAE decoder is used to visualize the ECG factors that were 

deemed important for a specific task by the statistical model. 

Figure 1.
Illustration of the full 
pipeline: a variational 
auto-encoder, the 
FactorECG and 
reconstructions.
The variational auto-
encoder (VAE) consists of 
three parts: the encoder, 
the FactorECG space and 
the decoder. An input 12-
lead median beat ECG is 
entered into the decoder, 
that compresses the ECG 
to its FactorECG with 32 
continuous factors. From 
those same factors, the 
ECG is reconstructed 
and the difference 
between the input and 
reconstructed ECG is 
used to train the model. 
The ECG factors are 
subsequently used in two 
ways: for development of 
interpretable classifiers 
for ECG diagnostic 
statements, reduced 
ejection fraction and one-
year mortality, and for 
visualization purposes. 
ECG factors can 
provide both individual 
patient- and model-
level visualizations. 
Individual visualizations 
are depicted here, where 
three median beat ECGs 
and their reconstructions 
are represented in the 
FactorECG. Notably, as 
dimension 10 encodes 
ventricular frequency, we 
see high values for the 
sinus tachycardia ECG. 
Moreover, as dimension 
26 inversely encodes 
left bundle branch 
conduction delay, we 
see low values for the 
left bundle branch block 
ECG. The normal ECG 
has value around zero 
for all factors, as the VAE 
is forced to learn factors 
with zero mean. ECG: 
electrocardiogram, LVEF: 
left ventricular ejection 
fraction, LBBB: left 
bundle branch block.
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The explainable pipeline is compared to current state-of-the-art ‘black 

box’ DNNs in three tasks: conventional ECG interpretation, detection of 

reduced ejection fraction and prediction of one-year mortality. For the 

conventional ECG interpretation task, we trained binary logistic regres-

sion models for each of the 35 diagnostic ECG statements on the Fac-

torECGs, as it provided maximum interpretability. For the detection of 

reduced ejection fraction and prediction of one-year mortality, as the aim 

was maximum performance, we trained two extreme gradient boosting 

decision tree (XGBoost) models.20 For this model, interpretability was ob-

tained using Shapley Additive exPlanations (SHAP), which can provide 

feature importance measures for every ECG factor on a model- and in-

dividual patient-level.21 For comparison, a baseline state-of-the-art ‘black 

box’ DNN with a similar architecture as the encoder of the VAE and the 

median beat ECG as input was trained for all three tasks.10,22 Additional 

information on the baseline model and training procedures for the three 

tasks are available in the Supplementary Methods.

The pipeline can provide explanations on both the model- and indi-

vidual patient level. On the model-level, ECG factors are visualized by 

factor traversals using the pretrained VAE decoder: varying the values 

of an individual factor while decoding and plotting the median ECG beat. 

Every visualization starts with zeros for all factors, which represents the 

mean ECG in the training dataset. Then, for every individual factor, val-

ues between -5 and 5 are assigned, while keeping the others at zero, 

and through decoding a new generated ECG is obtained. These recon-

structions are subsequently visualized in the same graph. This allows for 

detailed visualizations of morphological changes. On the individual pa-

tient-level, explainability is obtained by combining the distinct FactorECG 

values of that ECG with knowledge on the predictors that were important 

for a specific task. For example, if the FactorECG of an ECG contains a 

high value for a specific factor and this factor was associated with the 

outcome by the interpretable statistical model, this would explain why this 

specific ECG has a higher risk of the outcome. Other explainability is pro-

vided by associating the ECG factors with known ECG parameters (i.e. 

PR interval or QRS duration) and known ECG diagnoses (i.e. left bundle 

branch block or sinus tachycardia). 

Statistical analysis
All data are presented as mean ± SD or median with interquartile range, 

where appropriate. All individual ECG factors were related to the conven-

tional ECG measurements computed by the MUSE algorithm (i.e., ventri-

cular rate, PR, QRS and Bazett corrected QT duration, and R and T axis) 

using hexagon plots and Pearson correlation coefficients. Discriminatory 

performance of the models is assessed in the test sets using the c-sta-

tistic or area under the receiver operating curve (AUROC) and the area 

under the precision-recall curve (AUPRC). As all models are weighted 

for class imbalance, a probability cut-off of 50% was used. Overall, 95% 

confidence intervals are obtained using 2000 bootstrap samples. The 

Transparent Reporting of a Multivariable Prediction Model for Individual 

Prognosis or Diagnosis Statement for the reporting of diagnostic models 

was followed.23 
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Results

Development of the VAE and explainability of the 
FactorECG
The dataset for training of the VAE consisted of 1,144,331 12-lead median 

beat ECGs of 251,473 unique patients. The VAE was able to reconstruct 

the median beat ECGs excellently with a mean Pearson correlation co-

efficient of 0.90 (p < 0.001) between the original and reconstructed ECG. 

Reconstructions were most accurate for sinus rhythm, sinus bradycardia, 

early repolarization, and pericarditis ECGs (mean r=0.91–0.92), and least 

accurate for the rarer ECGs with ST elevation suspected of myocardial 

infarction and ventricular tachycardia (mean r=0.62–0.70). An overview 

of mean correlation coefficients per diagnostic ECG statements can be 

found in Supplementary Table 1. 

By analyzing the factor traversals (Supplementary Figure 2), only 

21 of the 32 factors were found to be necessary to reconstruct the 

ECG, and the other 11 were not used by the model to encode signifi-

cant data. Model-level explainability, using factor traversals, is shown 

for a subset of the 21 factors in Figure 2. An online tool to visualize the 

generated ECGs interactively is available via https://decoder.ecgx.ai. 

To further investigate and gain interpretability in the ECG factors, Pear-

son correlation coefficients were computed between conventional ECG 

measurements and ECG factors values (Figure 3). Ventricular rate is 

mostly correlated to factor 10 (r=0.96, p<0.001), while QRS duration is 

mostly correlated to factor 25 (r=-0.47, p<0.001). PR and QT interval are 

mostly correlated to factors 8 (r=0.62, p<0.001) and 30 (r=-0.52, p<0.001), 

respectively. The 21 significant ECG factors were independent of each 

other, with Pearson correlation coefficients ranging between -0.06 to 

0.09 (Supplementary Figure 3).

Figure 2.
Factor traversals 
of a subset of the 

ECG factors for 
leads I, II, V1, V3, V6. 

Factor traversals of 
a subset of the 21 

ECG factors that hold 
significant information 

for correctly 
reconstructing ECGs. 

Each row corresponds 
to the factor traversal 

for one ECG factor 
and the columns to a 

subset of the 12 leads. 
The factor traversal for 
one row is obtained by 

starting with a ‘mean’ 
FactorECG where all 
factors are zero and 

adding offsets for that 
factor in a range of -5 

to 5. The generated 
ECGs are then plotted 
where red represents 

high values for that 
factor and blue low 

values.
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Performance and explainability for conventional ECG 
interpretation
The dataset for training the algorithms to perform conventional ECG in-

terpretation consisted of 369,216 ECGs of 152,831 patients, while for vali-

dation the expert-annotated dataset was used, containing 965 ECGs (of 

965 patients) of adequate quality. 343 (36%) of the ECGs had more than 

one diagnostic statement and sinus rhythm was the most prevalent (72%), 

while third degree AV block was the least prevalent (0.1%, Table 2). The 

mean AUROC of the explainable pipeline was 0.94 [95% CI 0.92–0.96], 

compared to 0.73 [95% CI 0.65–0.81] for the rule-based MUSE algorithm 

and 0.96 [95% 0.94–0.98] for the ‘black box’ DNN. The explainable pipe-

line performed similarly for most diagnostic statements but was outperfor-

med for diagnosis of left ventricular hypertrophy and low QRS voltage by 

the ‘black box’ DNN (Table 2). The conventional MUSE algorithm, that is 

currently used in clinical practice, performed worst for all diagnostic state-

ments (Table 2). To understand which ECG factors were important for the 

pipeline to detect each ECG statement, we used the logistic regression’s 

coefficients as feature importance scores (Figure 4). The negative (blue) 

and positive (red) scores from Figure 4 can be related to the generated 

ECGs in the factor traversals after negative (blue) and positive (red) pertur-

bations in Figure 2 and Supplementary Figure 2. 

Performance and explainability for detection of re-
duced ejection fraction 
For the algorithms to detect reduced ejection fraction, 39,603 matched 

ECG-echocardiogram pairs of 22,676 patients were available, of which 25% 

(5669 unique patients, first pair per patient used) was used for validation. 

713 patients (13%) in the validation set had an ejection fraction below 35%. 

The explainable pipeline achieved an AUROC and AUPRC of 0.89 (95% 

CI 0.89–0.91) and 0.66 (95% CI 0.63 – 0.70), in comparison to 0.91 (95% CI 

0.89–0.92) and 0.70 (95% CI 0.68 – 0.74) for the ‘black box’ DNN, respecti-

vely. The most important model-level ECG factors for detecting reduced 

ejection fraction were high values in factors 5, 10 and 8 and low values in 

factors 25, 26, 1 and 30 (Figure 5). These correspond to negative T waves, 

higher ventricular rate, ST elevation, increased P-wave area and PR-inter-

val, right bundle branch block, and left bundle branch block, respectively. 

Figure 6 shows a model- and individual patient-level explanation for the 

detection of reduced ejection fraction using the novel pipeline, in compari-

son to the post-hoc explainability methods used up until now. 

Performance and explainability for prognosis of 
one-year mortality
For the models to predict one-year mortality, follow-up was available for 

909,958 ECGs of 177,448 patients, of which 40% (70,979 unique patients, 

ECG sampled randomly per patient) was used for validation. 5334 patien-

ts (7.5%) in the validation set deceased within one year. The explainable 

pipeline achieved an AUROC and AUPRC of 0.76 (95% CI 0.76–0.77) and 

0.21 (95% CI 0.20 – 0.22) compared to 0.75 (95% CI 0.74–0.76) and 0.21 

(95% CI 0.20 – 0.22) for the ‘black box’ DNN, respectively. In contrast, an 

XGBoost model that included only age and sex had an AUROC of 0.65 

(95% CI 0.64–0.66) and an AUPRC of 0.12 (95% CI 0.12 – 0.13). The most 

important global ECG factors for prediction of one-year mortality were 

high values for factors 10, 5, 12 and 11, and low values for factors 1, 30, 9 

and 27 (Figure 5). These correspond to an increased risk of one-year 

mortality with higher ventricular rate, inferolateral negative T-waves, ST-e-

levation, prolonged QT interval and anterior negative T-waves. Table 3 

shows a summary of the ECG morphology of all ECG factors, in combina-

tion with the most important associations for each factor.
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External validation of the FactorECG pipeline for de-
tection of reduced ejection fraction
Manually analyzed CMR imaging and 12-lead ECG recordings were avai-

lable for 4855 individuals, of which 28 had a reduced ejection fraction 

(0.62%). The VAE, that was trained in the UMC Utrecht dataset, could ac-

curately reconstruct the median beat ECGs from the UK Biobank (mean 

Pearson correlation coefficient between the original and reconstructed 

ECG: 0.88, p < 0.001). The FactorECG pipeline achieved an AUROC of 

0.89 (95% CI 0.84 – 0.95) and an AUPRC of 0.06 (95% CI 0.03 – 0.15) for 

detection of reduced EF in the external validation dataset. In comparison, 

the ‘black box’ DNN achieved an AUROC of 0.86 (95% CI 0.76 – 0.94) and 

an AUPRC of 0.12 (95% CI 0.06 – 0.27).

Figure 3.
Relationship of the 
ECG factors with 
conventional ECG 
measurements. 
a. Hexagon plots 
where datapoints 
of ECG factor-ECG 
measurements pairs 
over all samples in 
the VAE dataset are 
binned into hexagon 
grids to relate values 
of factors 8, 25, 
30, and 10 to the 
PR interval, QRS 
duration, QT interval 
and ventricular 
rate, respectively. b. 
Pearson correlation 
coefficients between 
ECG measures of 
ventricular rate, PR 
interval, QRS duration, 
QT interval, Bazett 
corrected QT interval, 
R-axis, and T-axis and 
ECG factor values 
over all samples in the 
VAE dataset.
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Figure 5.
Explanations for the one-year 

mortality and reduced EF 
models using SHAP values. a.

The most important model-
level ECG factors for detecting 

reduced ejection fraction 
computed using SHAP 

values. Importance is ordered 
from top-to-bottom and 

coloring corresponds to the 
reconstructed ECGs in Figure 

2. b. The most important global 
ECG factors for predicting 

one-year mortality. Importance 
is ordered from top-to-bottom 

and coloring corresponds to the 
reconstructed ECGs in Figure 2.

 

SHAP values for mortality modelSHAP values for reduced EF modela b

Figure 4.
Importance score for each of 
the 32 factors in predicting 35 
diagnostic ECG statements.
Importance scores of each of 
the 32 factors in the logistic 
regression for all 35 diagnostic 
ECG statements are shown 
to relate which dimensions 
are important for diagnosis. 
High importance values 
indicate that a high value for 
the dimension is diagnostic 
for that abnormality, and vice 
versa. The negative (red) and 
positive (blue) scores can be 
related to the reconstructions 
after negative (red) and positive 
(blue) perturbations in Figure 
2. Notably, factor 10 encodes 
ventricular frequency (as 
observed in Figures 2 and 3) 
and therefore has a high value 
in sinus tachycardia (red) and a 
low value in sinus bradycardia 
(blue). NICD: nonspecific 
intraventricular conduction delay.
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TERM DEFINITION

Decoder

Deep neural network 
(DNN)

Diagnostic
ECG statement

ECG factor

ECG measurement

Encoder

The decoder is a part of the VAE and can 
be used to construct a median beat ECG 
from any combination of values in the Fac-
torECG.

A deep neural network is an artificial 
intelligence algorithm that uses many 
layers with neurons to learn features 
from the input for prediction. In the case 
of ECG, a convolutional neural network is 
used, where the network learns features 
from the raw ECG signal itself.

Diagnostic statement given to an ECG 
by the overreading physician, e.g. sinus 
tachycardia, left bundle branch block or 
early repolarization. 

An ECG factor is one of the 21 values in the 
FactorECG and is a continuous value that 
can be used in any prediction model or for 
interpretability.

ECG measurements are automated 
measurements of the intervals and axis of 
an ECG, such as PR interval and R-wave 
axis.

The encoder is a part of the VAE and can 
be used to convert any median beat ECG 
into its respective FactorECG.

TERM DEFINITION

Explainable
pipeline

Factor traversal

Factor ECG

One-year all-cause 
mortality model

Reduced left ventricular 
ejection fraction model

Variational
auto-encoder (VAE)

The explainable pipeline is this work 
consists of three parts: firstly, the ECGs 
is encoded in its FactorECG using the 
pretrained VAE encoder, then the 21 
significant ECG factors are entered into 
interpretable sta-tistical models to perform 
the prediction or diagnosis task, and 
finally the pretrained VAE decoder is used 
to visualize the ECG factors that were 
deemed important for a specific task by 
the statistical model.

The factor traversal is a method to visualize 
what ECG morphology a single ECG factor 
represents. This is done by keeping all 
ECG factor values at 0, while varying the 
factor of interest between -5 and 5 and 
construction and plotting ECGs using the 
decoder.

The latent space of the VAE proposed 
here is called the FactorECG and consists 
of 21 continuous normally distributed fac-
tors.

This model is trained to predict which indi-
viduals die from any cause within one year.

The ejection fraction is the fraction of blood 
ejected from the left ventricle (chamber) of 
the heart with each contraction. An ejection 
fraction below 40% is a sign of heart failure 
with reduced ejection fraction. This model 
is trained to detect which patients have an 
ejec-tion fraction below 40% as measured 
by echocardiography.

The variational auto-encoder consists of 
three parts, an encoder DNN to compress 
the raw ECG data into a reduced set of 
continuous val-ues, the latent space, 
and a decoder to reconstruct that same 
ECG from these values. It is trained in 
an unsupervised manner by learning to 
reconstruct many ECGs from the latent 
space.

Table 1. 
Glossary of 
terms used 

throughout the 
manuscript.
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DIAGNOSTIC
STATEMENT

PREVALENCE

AUROC
[95% CI]

n (%) AU-PRC

Sinus rhythm

Ventricular
tachycardia

Junctional
bradycardia

697 (72) 0.90 [0.88 - 0.92] 0.96

Sinus tachycardia

First degree
AV block

91 (9.4)

2 (0.2)

0.95 [0.92 - 0.97]

0.50 [0.5 - 0.5]

0.75

0

Atrial flutter 2 (0.2) 0.74 [0.49 - 1] 0.04

Sinus bradycardia

Pacemaker rhythm

30 (3.1)

4 (0.4)

0.70 [0.61 - 0.78]

0.75 [0.5 - 1]

0.09

0.13

Atrial fibrillation

Third degree
AV block

RBBB

LBBB

LAFB

NICD

90 (9.3)

27 (2.8)

57 (5.9)

1 (0.1)

59 (6.1)

22 (2.3)

71 (2.4)

14 (1.5)

0.88 [0.84 - 0.93]

0.92 [0.85 - 0.98]

0.86 [0.8 - 0.92]

0.5 [0.5 - 0.5]

0.95 [0.91 - 0.98]

0.88 [0.79 - 0.97]

0.64 [0.59 - 0.69]

0.63 [0.53 - 0.76]

0.73

0.74

0.66

0

0.66

0.64

0.29

0.09

Supraventricular 
tachycardia

18 (1.9) 0.58 [0.5 - 0.67] 0.15

MUSE 12 SL

AUROC
[95% CI]

AUROC
[95% CI]

AU-PRC AU-PRC

0.94 [0.92 - 0.96] 0.96 0.96 [0.95 - 0.97] 0.98

0.99 [0.98 - 0.99]

0.99 [0.98 – 1.00]

0.81

0.21

0.99 [0.99 – 1.00]

1.00 [0.99 – 1.00]

0.94

0.23

0.98 [0.96 - 0.99] 0.04 1.00 [0.99 – 1.00] 0.67

0.95 [0.92 - 0.98]

0.99 [0.96 – 1.00]

0.39

0.46

0.94 [0.87 - 0.97]

1.00 [0.99 – 1.00]

0.37

0.56

0.99 [0.98 - 0.99]

0.97 [0.94 - 0.98]

0.98 [0.97 - 0.99]

1.00 [1.00 – 1.00]

0.98 [0.97 - 0.99]

1.00 [0.99 – 1.00]

0.84 [0.79 - 0.88]

0.94 [0.92 - 0.96]

0.78

0.46

0.68

0.31

0.69

0.82

0.28

0.12

0.98 [0.97 - 0.99]

0.97 [0.93 - 0.99]

0.96 [0.94 - 0.98]

1.00 [0.99 – 1.00]

0.99 [0.98 – 1.00]

1.00 [1.00 – 1.00]

0.97 [0.96 - 0.98]

0.88 [0.73 - 0.97]

0.86

0.68

0.71

0.14

0.83

0.95

0.62

0.3

0.97 [0.95 - 0.98] 0.33 0.98 [0.96 - 0.99] 0.34

EXPLAINABLE PIPELINE BLACK BOX DNN
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DIAGNOSTIC
STATEMENT

PREVALENCE

AUROC
[95% CI]

n (%) AU-PRC

Myocardial infarction 66 (6.8) 0.6 [0.55 - 0.65] 0.19

Low QRS voltage 40 (4.2) 0.76 [0.68 - 0.83] 0.36

Early repolarisation 23 (2.4) 0.52 [0.5 - 0.57] 0.04

Left ventricular 
hypertrophy

44 (4.6) 0.79 [0.71 - 0.86] 0.32

Prolonged
QT interval

22 (2.3) 0.69 [0.6 - 0.8] 0.14

Acute pericarditis 7 (0.7) 0.57 [0.5 - 0.71] 0.15

MUSE 12 SL

AUROC
[95% CI]

AUROC
[95% CI]

AU-PRC AU-PRC

0.77 [0.72 - 0.82] 0.16 0.77 [0.71 - 0.82] 0.19

0.8 [0.74 - 0.86] 0.18 0.96 [0.94 - 0.98] 0.63

0.96 [0.93 - 0.98] 0.45 0.98 [0.97 - 0.99] 0.61

0.82 [0.77 - 0.87] 0.15 0.97 [0.95 - 0.98] 0.63

0.95 [0.91 - 0.97] 0.43 0.93 [0.89 - 0.95] 0.2

0.99 [0.99 – 1.00] 0.49 0.99 [0.96 – 1.00] 0.61

EXPLAINABLE PIPELINE BLACK BOX DNN

Table 2.
Diagnostic performance values 
for the conventional ECG 
interpretation task in the expert-
annotated test set.
The AUROC and AUPRC scores 
per diagnostic statement in the 
ECG interpretation task for the 
rule-based MUSE algorithm, 
explainable pipeline, and 
‘black-box’ DNN are shown. A 
reduced set of the 35 diagnostic 
statements was tested, as some 
abnormalities did not occur 
in the test dataset. Moreover, 
the myocardial ischemia 
labels in different locations 
were combined. AUROC: area 
under the receiver operating 
curve, AUPRC: area under 
the precision-recall curve, AV: 
atrioventricular, CI: confidence 
interval, DNN: Deep Neural 
Network, LAFB: left anterior 
fascicular block, LBBB: left 
bundle branch block, NICD: 
non-specific intraventricular 
conduction delay, RBBB: right 
bundle branch block.
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FACTOR

ECG Morphology Associations

10 Shorter QT-interval 
and TP-interval

One-year mortality

5

12

Inferolateral T-wave 
inversion

Earlier onset of 
depolarisation

T-wave axis, LBBB, inferior and 
lateral ischemia, low QRS vol-
tage, reduced EF and one-year 
mortality

First degree AV block and 
reduced EF

Anterior and septal ischemia

8 Shorter PR-interval 
and P-wave duration

LBBB and reduced EF

1

11

Inferolateral horizonal
ST depression

Subtle QRS- and 
T-wave changes

Left ventricular hypertrophy

Reduced PR-interval, WPW 
pattern, LAFB and one-year 
mortality

6

13

15

16

17

19

22

23

Increased P-wave 
amplitude

Anterior horizon-tal 
ST-elevation
P/T overlap

Subtle T-wave 
changes

Slower R-wave pro-
gression

Lateral horizontal 
ST-elevation

Baseline shift

Reduced P-wave 
amplitude

Sinus tachycardia

LAFB

Lateral ischemia and right ven-
tricular hypertrophy

9 Anterior concave 
ST-elevation

Increased ventricular frequen-
cy, sinus tachycardia, atrial 
fibrillation, atrial flutter, SVT, low 
QRS voltage, reduced EF and 
one-year mortality

HIGH VALUES LOW VALUES

Atrial fibrillation, junctional 
bradycar-dia, third degree AV 
block

ECG Morphology Associations

Longer QT-interval
and TP-interval

Increased PR-interval and first-degree AV block

Inferolateral concave ST
elevation

Later onset of depolarization

T-wave axis, pericarditis, early repolarization

WPW pattern

Atrial fibrillation, atrial flutter

Third degree AV-block and junctional brady-cardia.

Longer PR-interval and 
P-wave duration

RBBB, RVH, posterior ischemia, T-wave inversion
and one-year mortality

Inferolateral horizonal
ST depression

Subtle QRS- and T-wave 
changes

Pericarditis, reduced EF 
and one-year mortality

Reduced EF

Reduced P-wave amplitude

Anterior horizontal
ST-depression
Reduced P-wave amplitude

Subtle T-wave changes

Faster R-wave progression

Lateral horizontal
ST-depression

Baseline shift

Increased P-wave
amplitude

Posterior and lateral ischemia

Inferior ischemia

Anterior T-wave inversion
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FACTOR

ECG Morphology Associations

32 Decreased pre-cor-
dial QRS-amplitude

26 -

30 Shorter QT-interval

Right axis deviation

25 Shorter QRS duration

27 P- and R-axis deviation to the 
left with increasing P- and 
R-wave amplitudes

31 R-axis deviation to the right

ECG Morphology Associations

Increased precordial
QRS amplitude

Deep and broad S-wave in 
V1 with monophasic broad 
lateral R-waves and negati-
ve T-waves

LBBB and reduced EF

Prolonged QT interval, reduced EF and one-year mortality

Low QRS voltage, left axis deviation, third degree AV-
block, atrial fibrillation, atrial flut-ter, SVT, junctional bra-
dycardia, reduced EF and one-year mortality

Longer QT-interval

Left axis deviation, LAFB and LVH

Longer QRS duration with 
slurred S-wave

RBBB, LBBB, ventricular tachycardia, NICD, 
WPW pattern and reduced EF

P- and R-axis deviation to 
the right with decreasing 
P- and R-wave amplitudes

R-axis deviation to the left

LVH

Table 3.
Summarizing description 
of ECG morphology and 
associations of the 21 
significant ECG factors.
The influence of an ECG 
factor on median beat ECG 
morphology is determined 
using visual inspection of the 
factor traversals (Figure 2). A 
summary of the most important 
associations of every ECG 
factor with conventional ECG 
measurements, ECG diagnostic 
statements, reduced EF and 
one-year mortality is obtained 
by combining results from 
Figures 3, 4 and 5. EF: ejection 
fraction, LAFB: left anterior 
fascicular block, LBBB: left 
bundle branch block, LVH: left 
ventricular hypertrophy, NICD: 
nonspecific intraventricular 
conduction delay, RBBB: right 
bundle branch block, RVH: right 
ventricular hypertrophy, SVT: 
supraventricular tachycardia, 
WPW: Wolff-Parkinson-White.

HIGH VALUES LOW VALUES
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Discussion

In this study, we demonstrate a novel pipeline that provides impro-

ved explainable interpretation of ECGs, which consists of three major 

components: (i) a generative deep learning model that learned to 

summarize the underlying factors of variation of an ECG in 21 factors 

(the FactorECG), (ii) a visualization technique to provide insight into 

ECG morphology that these factors encode, and (iii) a common inter-

pretable statistical method to perform diagnosis or prediction using 

the ECG factors (Figure 1). We investigated the FactorECG using vi-

sualizations and associations with conventional ECG measuremen-

ts and diagnostic ECG statements to show that many of the factors 

represents valid and relevant generative factors of ECG morphology 

(Table 3). Moreover, when applying the novel explainable technique 

for conventional ECG interpretation and recently emerged use cases 

for the ECG, not only did it perform similarly to the ‘black box’ algori-

thms for these use cases, but it could also explain which morphologi-

cal ECG changes were important for prediction or diagnosis. Finally, 

we showed that FactorECG itself, and the pipeline for detection of 

reduced ejection fraction, generalize excellently to a completely dif-

ferent population-based cohort. This indicates that inherently explai-

nable deep learning methods should be used to gain confidence in AI 

for clinical decision making, and more importantly, make it possible to 

identify biased or inaccurate models. 

A longstanding assumption was that the high-dimensional and 

non-linear ‘black box’ nature of the currently applied DNNs was in-

evitable to gain the impressive performances shown by these algo-

rithms.5,13,22 The major finding of the current study is that a VAE-based 

approach performs on par with the ‘black box’ algorithms in both con-

ventional and novel tasks (Table 2), while also giving insight in the 

ECG morphology that explains the prediction. A main advantage of 

the current approach over previous attempts to open the ‘black box’ 

of DNNs using post-hoc explainability methods (i.e., heatmaps) is that 

we can reliably and quantitively specify the morphology of the ECG 

change, instead of only pointing at the location on the ECG’s time axis 

(Figure 6).3,5,10,24  

Other studies investigated the use of (variational) auto-encoders 

on 12-lead ECGs in smaller datasets and showed that VAEs can be 

useful for compression of ECGs, data augmentation, clustering and 

feature generation.25–28 Interestingly, Kuznetsov et al also determined 

that approximately 20-25 factors are needed to encode a single or 

median beat ECG.28 Our work makes the latent space of a VAE (i.e. 

the FactorECG) clinically useful and explainable to physicians, by (a) 

linking the ECG factors with known ECG measurements and diag-

nostic statements (Figures 3 and 4 and Table 2 and 3), (b) provid-

ing extensive visualizations offline (Figure 2) and using an online tool  

(https://decoder.ecgx.ai) and (c) showing that the ECG factors have ad-

equate predictive power in various downstream tasks. Figure 6 shows 

an example of how a FactorECG-based pipeline can be used in clini-

cal practice. At model-level, the overall most important morphological 

ECG changes (i.e., ECG factors) for a specific task are shown and can 

be used to detect possible biases. At patient-level, the user is provid-

ed with an individual explanation of which morphological ECG chang-

es in this patient are causing the higher risk of reduced EF, for exam-

ple. The online tool provides a possibility to upload ECGs to show the 

predictions and explanations, or to extract the FactorECGs to train new 

models using the code provided (https://encoder.ecgx.ai and https://

github.com/rutgervandeleur/ecgxai).
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Predict reduced ejection fraction
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Clinical implications
"Based on the ECG, this patient has a predicted 

risk of 60% for reduced EF. This seems to be 
due a difference in the terminal T-wave, but the 

exact difference or its cause is unknown."

Clinical implications
"Based on the ECG, this patient has a predicted 
risk of 63% for reduced EF. In this case this is 

due to the combination of inferolateral negati-
ve T waves (F5) with a high ventricular rate (F10) 
and increased PR interval and P-wave size (F8).”

Clinical implications
"This reduced EF prediction models bases it 
decisions of the presence of, for example, 

inferolateral negative T-waves (F5), but also 
ST-evelation (F1). This warrants further investiga-
tion, as the model might not be generalizable to 

a population-based setting."

Clinical implications
"It remains unknown how this model works 
internally, which makes it hard to identify 

biases or learn new features."

F1

Predict reduced ejection fraction

We hypothesized that an ECG can be explained by a few under-

lying explanatory factors of variation and showed that it is possible to 

encode the median beat ECG morphology in 21 continuous factors, 

from which the ECG can be reconstructed with high precision (Pearson 

correlation between original and reconstructed ECG 0.90 in internal 

validation and 0.88 in external validation). An online tool for clinicians 

to interactively visualize the factors can be found via https://decoder.

ecgx.ai. When relating the ECG factor traversals (Figure 2 and Sup-

plementary Figure 2) to diagnostic ECG statements and conventional 

ECG measurements (Figures 3 and 4), we were able to relate many 

of them to the underlying anatomical and (patho)physiological fac-

tors (Table 3). For example, factor 10 has a clear linear relationship 

with ventricular frequency and therefore shows high values for sinus 

tachycardia and low values for sinus bradycardia. Moreover, the factor 

traversals (Figure 2) show the changes in the ECG associated to the 

ventricular frequency, such as the length of the QT interval and ap-

pearance of the T-wave of the previous beat. Factors 6, 23 and 27 ac-

count for the P-wave size and are related to diagnoses that involve the 

P-wave, such as junctional bradycardia and atrial fibrillation, while PR 

interval (or location of the P-wave) is encoded in factor 8. Factors 25, 

26 and 30 encode ventricular conduction delays, such as right and left 

bundle branch block, while ventricular repolarization is mainly encod-

ed in factors 1, 5, 9, 13 and 30. ST elevation is most prominent in factors 

1 and 5, which are subsequently important for predicting diagnoses 

such as acute pericarditis and early repolarization. Next to these more 

common ECG variations, rare abnormalities are also represented, as 

for example Wolff-Parkinson-White pattern (with pre-excitation and 

short PR interval) is encoded using a combination of factors 8 and 12. 

An overview of the ECG morphology and most important associations 

for each ECG factor can be found in Table 3.

For the reduced ejection fraction task we found that the perfor-

mance of the explainable pipeline is equivalent to both the black box 

DNN in our dataset and in the original publication by Attia et al.4 This 

finding was externally validated in the UK Biobank, a population-based 

cohort that is very different from the academic hospital-derived train-

Figure 6. 
Comparison of 
architecture and 
model- and individual 
patient-level 
explainability using 
the novel inherently 
explainable approach 
as compared to post-
hoc heatmap-based 
explainability for 
detection of reduced 
ejection fraction. 
The conventional 
‘black box’ DNN 
contains only a single 
encoder to interpret 
the ECG. Afterwards, 
Guided Grad-CAM 
is applied to show 
what segments of the 
ECG were important 
for prediction on the 
patient-level. Model-
level explainability 
is not possible. The 
novel explainable 
pipeline adds a 
generative part to the 
architecture, which 
allows for precise 
visualizations of 
the morphological 
ECG features. By 
combining factor 
SHAP importance 
scores and factor 
traversals, we 
obtain model-level 
explainability. 
Individual patient-
level explainability 
is achieved using 
individual SHAP 
importance score.
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ing population, and shown to be robust with a similar AUROC as in the 

internal validation dataset. Most important ECG indicators for reduced 

EF were consistent with previous findings that indicated similar fea-

tures to be predictive of heart failure: inferolateral negative T-waves, 

increased ventricular rate, P-wave area, prolonged PR interval, RBBB, 

LBBB, but also inferolateral ST elevation.29 The importance of this 

latter feature illustrates that the DNN also picks up reduced ejection 

fraction due to acute ischemia. This could hamper the generalizability 

of such models for screening purposes in the general population as 

these patients are only present in large hospitals and is one of the 

reasons why explainable models are imperative.8,30 Although the mod-

el for one-year mortality performs worse than in the original paper by 

Raghunath et al., it does perform similarly to the ‘black box’ DNN on 

our dataset.5 The difference in performance is likely caused by differ-

ences in the population, as the predictive value of just age and sex is 

also lower than in the original paper. We observed that the predictors 

for one-year mortality are increasing age, higher ventricular frequency, 

negative T-waves and ST-depression and elevation and prolonged QT 

interval, which are all known risk factors for mortality.31,32 

There are several limitations to acknowledge. Firstly, the algorithm 

is trained on a very large dataset with over 1 million ECGs, but we could 

not account for imbalance in ECG abnormalities due to the unsuper-

vised nature of training. Therefore, less common ECG abnormalities 

might not be accurately encoded, as also demonstrated by the lower 

performance on for example ischemia classes and lower correlation 

coefficients of the reconstructed ECGs (Supplementary Table 1). Fu-

ture studies could experiment with balancing the dataset based on la-

belled abnormalities and the effect it may have on encoding rare ECG 

abnormalities. Secondly, the reduced performance of the explainable 

pipeline in diagnosing low QRS voltage and left ventricular hypertro-

phy is most likely due to the inability of the VAE to always reconstruct 

the amplitude of the R-wave correctly (Supplementary Table 1). Fur-

ther research in the field of generative models for ECGs is needed 

to address this limitation and to improve the reconstruction quality. 

Finally, only one DNN architecture was investigated for comparison 

to a ‘black box’ DNN, which was similar to the encoder of the VAE for 

accurate comparison. As the performance of the current architecture 

is on par with other state-of-the-art models for similar tasks in this and 

other research of our group, we do not expect much gain from other 

DNN architectures.4,10,22,33,34

Future studies should focus on evaluating the use of inherently 

explainable pipelines on other ECG tasks, as the dimensionality re-

duction of our algorithm to 21 factors broadens the usability of DNNs 

greatly to much smaller labeled datasets than before. Another import-

ant perspective is using the approach on full 10-second rhythm ECGs, 

to take additional ECG information into account. Rhythm disorders that 

are not visible in the median ECG beat, such as second-degree AV 

block and premature ventricular and atrial complexes, could add in-

teresting information to the model. Finally, explainability of the current 

approach is hampered by the fact that some of the factors in the cur-

rent FactorECG are still ambiguous and represent multiple ECG chang-

es at the same time. Further developments in the field of DNN-based 

feature generation are needed to better disentangle the ECG factors.
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Conclusion

In conclusion, we leveraged a large dataset of over 1 million ECGs to train 

a generative DNN that learned 21 valid underlying anatomical and (patho)

physiological explanatory factors of variation in median beat 12-lead ECG 

data. We showed that our pipeline is not only able to interpret ECGs with 

highly accurate performance on par with ‘black box’ DNNs but also provi-

de improved explainability on which ECG morphologies were important. 

These findings demonstrate that inherently explainable pipelines should 

be the future of ECG interpretation, as they allow reliable clinical interpre-

tation of these models without performance reduction, while also broade-

ning their applicability to many other (rare) diseases.
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To the Editor,

We appreciate the opportunity to address Higaki and Yamaguchi 

and their detailed commentary on our study.1 In the referenced study, 

we show that variational auto-encoders (VAE), which use deep neural 

networks (DNNs) to learn the underlying factors of variation in the me-

dian beat ECG, can be used to provide improved explainability over 

previous attempts to open the ‘black box’ of ECG-based DNNs using 

saliency-based heatmaps. There are currently conflicting definitions of 

explainability and interpretability in the literature and both are used in-

terchangeably. In this work, explainability  refers to the concept of pro-

viding insight into why the algorithm makes a certain decision. Inter-

pretability, on the other hand, refers to how the algorithm decides, by 

providing a direct relation between predictor and outcome.2

Currently employed explainability techniques for ECGs are usual-

ly saliency-based heatmaps, but these techniques have shown to be 

unreliable and poorly reproducible. For example, Adebayo et al. have 

shown that even untrained DNNs provide heatmaps that look reassur-

ing.3 Moreover, Hooker et al. have shown that when you remove the 

regions deemed important by many saliency-based methods, perfor-

mance of the classifier does not decrease after retraining.4 Our own 

preliminary experiments have shown similar results for ECGs.

Even when saliency-based methods produce reliable results, the 

heatmap can only point at temporal locations in the ECG, which does 

not provide enough explainable value. For example, a highlighted ter-

minal T-wave could mean the QT interval, the T-wave height, the T-wave 

morphology or something else.5 Some researchers have tried to over-

come this by entering 2-dimensional images of the ECG into the deep 

neural network and applying the heatmap on the image.6 Although this 

may add some ‘voltage-related’ information, it will still not provide infor-

mation on the exact morphology of that feature. 

Lastly, next to the individual explanations of decisions by the mod-

el, some form of model-level explainability is necessary to gain insight 

into the overall decision-making process of the model. Especially in 

big datasets, it not feasible to inspect all individual heatmaps. Although 

there have been attempts to translate the individual heatmaps to com-

plete datasets, for example by taking the mean, model-level explainabil-

ity remains unsatisfactory.7 A lack of model-level explainability poses the 

risk of confirmation bias: when there are many possible individual expla-

nations for your complex model, will you just pick the ones that confirm 

your hypothesis?2 Many papers show only some example ECGs with 

their respective heatmaps, and draw conclusions from these examples 

alone about the workings of the algorithm.8

In our study, we demonstrated improved explainability over heat-

map-based methods for these three major limitations. This is done by 

intentionally decoupling feature discovery from classification in DNNs 

using a β-VAE to decompose the ECG into its generative factors (the 

FactorECG). By combining these learned explainable factors with stan-

dard interpretable models (such as logistic regressions) in a pipeline, we 

are able to create a fully explainable pipeline (Figure 1). This approach 

greatly improves reproducibility and reliability, as a pretrained VAE will 

always produce the same FactorECG for a given ECG. Moreover, we 

are able to show actual changes to ECG morphology instead of just 

a temporal location in the ECG by using visual inspection of the factor 

traversals. In the current analysis, we provide additional insight into the 

factors by showing relationships with diagnoses and conventional ECG 

characteristics (e.g. PR interval), but using solely these characteristics 

does not lead to comparable performance as using the ECG factors.9 

We completely agree with Higaki and Yamaguchi, however, that asso-

ciations with echocardiography or genetics are much more interesting, 

and this is an area of active investigation by our group. 

Conversely to the suggestion of Higaki and Yamaguchi, we have 

designed and extensively described the employed pipeline not to hide 

the fact that we use simpler interpretable statistical models (such as lo-

gistic regression or XGBoost with SHAP) for prediction tasks, but rather 

as a major strength of the selected methodology. This allows estab-

lishing a direct relation between the ECG factors (and their respective 

influence on the ECG morphology) and the prediction on the individu-
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al and model-level, without a loss of predictive performance (Figure 1). 

When logistic regression is used, the odds ratios for each ECG factor 

provide model-level explainability, while for individual cases the ECG 

factor values of that specific ECG can be investigated in combination 

with the odds ratios. Furthermore, due to the dimensionality reduction, 

it broadens the applicability of DNNs to much smaller datasets. In re-

cent publications, we have shown that the FactorECG is able to predict 

the risk of life-threatening ventricular arrhythmias in patients with dilated 

cardiomyopathy and success of cardiac resynchronization therapy.9,10 

In conclusion, we show that decoupling feature extraction from classi-

fication in deep learning-based ECG analysis allows for improved explain-

ability over heatmap-based methods. Our pipeline employs the power of 

deep learning to discover features in the median beat ECG morphology, 

while also enabling the use of different interpretable classification mod-

els. Our experiments show that this decoupling does not lead to a loss 

in predictive performance, which contradicts a longstanding assumption 

that the ‘black box’ nature of the currently applied DNNs was inevitable 

to achieve impressive performances. Future studies should thus focus 

on using such explainable pipelines, consisting of a separate feature ex-

traction method (for example a VAE) and interpretable classification meth-

od, as they could increase trust in AI, allow for bias detection and broaden 

the application of AI to many other (rare) diseases. 
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group with outcomes
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Figure 1.
Overview of the novel 

explainable pipeline. 
During training and 
validation (left), any 

ECG dataset with 
available outcomes 

can be used as input to 
the pipeline.

As the ECGs are 
converted to only 32 
factors, datasets can 

be relatively small. 
The VAE encoder, 

that was pretrained 
on 1.1 million ECGs, is 
subsequently used to 

convert every single 
ECG into its FactorECG 
(32 continuous values 

that represent that 
ECG). These 32 factors 

per ECG are used 
in the next step to 

train an interpretable 
statistical model for 

diagnosis or prediction, 
such as logistic 

regression. As these 
models are inherently 

interpretable, they 
provide importance 

values, such as odds 
ratios, for every ECG 

factor individually. 
As we are able to 

visualize the influence 
of the individual ECG 

factors on the ECG 
morphology using the 
VAE decoder, a direct 
relationship between 
ECG morphology and 
the prediction can be 

obtained on the model-
level. During inference 

(right), an individual 
ECG can be entered 

into the pretrained VAE 
encoder. Prediction 
is performed using 

the previously trained 
interpretable, and 

individual-level 
importance measures 

per ECG factor are 
obtained. These 

individual importance 
measures can 

subsequently be 
related to the ECG 
morphologies and 
correlates of each 

factor, to better 
understand why the 
algorithm made this 

specific prediction. An 
online tool is provided 

for other researchers 
to use the FactorECG 
in their study (https://

encoder.ecgx.ai).
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Abstract

Abstract

Background
Electrocardiogram (ECG) interpretation requires expertise and is mostly based on physician 

recognition of specific patterns, which may be challenging in rare cardiac diseases. Deep neural 

networks (DNN) can discover complex features in ECGs and may facilitate the detection of novel 

features which possibly play a pathophysiological role in relatively unknown diseases. Using a cohort 

of phospholamban (PLN) p.Arg14del mutation carriers, we aimed to investigate whether a novel 

DNN-based approach can identify established ECG features, but moreover we aimed to expand our 

knowledge on novel ECG features in these patients. 

Methods
A DNN was developed on 12-lead median beat ECGs of 69 patients and 1380 matched controls and 

independently evaluated on 17 patients and 340 controls. Differentiating features were visualized 

using Guided Grad-CAM++. Novel ECG features were tested for their diagnostic value by adding 

them to a logistic regression model including established ECG features. 

Results
The DNN showed excellent discriminatory performance with a c-statistic of 0.95 (95% confidence 

interval 0.91-0.99) and sensitivity and specificity of 0.82 and 0.93, respectively. Visualizations revealed 

established ECG features (low QRS voltages and T-wave inversions), specified these features (e.g. 

R and T-wave attenuation in V2/V3) and identified novel PLN-specific ECG features (e.g. increased 

PR-duration). The logistic regression baseline model improved significantly when augmented with 

the identified features (p<0.001).

Conclusions
A DNN-based feature detection approach was able to discover and visualize disease-specific ECG 

features in PLN mutation carriers and revealed yet unidentified features. This novel approach may 

help advance diagnostic capabilities in daily practice.

Introduction

Interpretation of the electrocardiogram (ECG) requires expertise and is 

mainly based on physician recognition of patterns that are known to be-

long to a particular disorder. However, for rare and relatively unknown 

cardiac diseases, this may be challenging since ECG features are often 

unknown and require expert knowledge to recognize. By automating the 

discovery and expanding the knowledge on disease-specific ECG fea-

tures, interpretation of ECGs by physicians could be improved. Such a 

support tool could be of particular importance when expert knowledge is 

not readily available or in research settings to automate the detection of 

disease-specific ECG features. 

Recently, ECGs have been analyzed using deep neural networks 

(DNNs), which are computer algorithms that are based on the structure 

and functioning of the human brain.1 Their layers can be trained to dis-

cover complex patterns in ECGs, without requiring hand-crafted feature 

extraction. Several studies have applied DNNs for automated predictions 

from ECGs, and one recent study showed that it is feasible to diagnose 

hypertrophic cardiomyopathy (HCM) on the ECG.2–4 However, the meth-

ods used in these studies all require very large datasets, which are often 

not available for rare diseases. Furthermore, these previous studies all 

focus on prediction, but specific ECG patterns used by DNNs are rarely 

visualized.3,5–8 Visualization of such features takes advantage of the fea-

ture discovery embedded in DNNs and will help clinicians to interpret 

ECGs more accurately, and possibly facilitate discovery of novel features.

Cardiomyopathy-related genetic mutations are rare but are often asso-

ciated with typical ECG features. An example is the deletion of three base 

pairs (c.40_42delAGA) in the phospholamban (PLN) gene, leading to the 

deletion of Arginine 14 in the PLN protein (p.Arg14del).9–11 Prevalence of the 

PLN p.Arg14del mutation is estimated to be 0.07% in the northern regions 

of the Netherlands and is present in 12% of Dutch patients developing 

Deep Learning-Based ECG Feature Detection in PLN | 191
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a phenotype of arrhythmogenic right ventricular cardiomyopathy (ARVC) 

and in 15% of patients developing dilated cardiomyopathy (DCM).11–13 With 

regard to ECG characteristics in these mutation carriers, typical features 

that have previously been described are attenuated QRS-amplitudes and 

inverted T-waves in the right and left precordial leads.12,14,15

Beside using DNNs merely for prediction or diagnosis, we hypothe-

size that DNNs can also be used for feature visualization itself. This will 

potentially enable discovery of novel ECG features that belong to a par-

ticular disease. In this study, we used a cohort of PLN mutation carriers 

to investigate whether a novel DNN-based approach can (i) identify the 

already well-established ECG features in these mutation carriers and (ii) 

possibly expand our knowledge on ECG features in these mutation car-

riers.

Methods

Data availability
The data used in this study are not publicly available due to privacy re-

strictions. The code for training the DNN and for generating the visuali-

zations and tables in this paper is available upon request from the corre-

sponding author.

Data source and study participants
The dataset consisted of 12-lead ECGs from patients between 18 and 85 

years old acquired in the University Medical Center Utrecht (UMCU) from 

January 2000 to August 2019. All extracted data were de-identified in 

accordance with the EU General Data Protection Regulation and written 

informed consent was therefore not required by the ethical committee. All 

ECGs were interpreted by a physician as part of the clinical workflow and 

these free text annotations were structured using a text mining algorithm 

described before.3 We excluded all ECGs of insufficient quality and all 

ECGs with supraventricular and ventricular arrhythmias (excluding prema-

ture atrial and ventricular complexes), paced rhythms, undefined rhythms 

and signs of acute ischemia.

All index patients in the dataset who carry the genetic PLN p.Arg14del 

mutation and their relatives that tested positive, were identified. ECGs ac-

quired after the implantation of a left ventricular assist device (LVAD) or 

heart transplantation were excluded. Only the first acquired ECG of each 

mutation carrier was used for development of the model. 

The control group was derived from the remaining dataset and con-

sisted of 365,173 ECGs of 147,098 unique patients. Per mutation carrier, 

20 controls were matched using propensity score matching on age and 

sex. This number was chosen to have sufficient samples to train the DNN 

without having a too severe class imbalance. Only one ECG per control 

subject, sampled without replacement, was used to make sure every sub-
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ject was only used once. The matched groups were randomly split in an 

80:20 manner to training and test sets.

Data acquisition
For all ECGs the median beats were exported from the MUSE ECG sy-

stem (MUSE version 8, GE Healthcare, Chicago, IL, United States). The 

median beat data is constructed by aligning all QRS-complexes of the 

same shape (e.g. excluding premature ventricular complexes) and gene-

rating a representative QRS-complex by taking the median voltage.16 Ac-

quisition and feature extraction of the included ECGs is described in more 

detail in the Supplemental Material.

Baseline logistic regression model
To demonstrate the capability of DNN in identifying novel relevant featu-

res, we first developed a baseline logistic regression model, only based 

on the established ECG features of PLN mutation carriers. The matching 

variables, age and sex, and the established PLN-specific ECG features 

(low QRS voltage and right (V2-V3) and left (V4-V6) precordial T-wave in-

version) were included as predictors in the model.17 The model was trai-

ned on the training dataset and evaluated on the test set. 

Deep neural network development
We constructed a deep convolutional neural network with exponentially 

dilated causal convolutions. The proposed architecture, inspired by the 

method described by Van Oord et al. and Franceschi et al., compromises 

of several 1-dimensional dilated causal convolution blocks.18,19 Eight-fold 

cross validation on the training dataset was used for optimization of the 

hyperparameters of the network. The simplest network with the highest 

geometric mean of area under the receiver operating curve and F2 score 

averaged over all folds was chosen and trained on the complete training 

dataset. The performance of this network was estimated on the test sub-

set. Network training was performed using the PyTorch package (version 

1.3).20 A detailed description of the architecture of the DNN can be found 

in the Expanded Methods and an overview of the network architecture is 

shown in Supplemental Figure 1.

Feature visualization
To identify the parts of the ECG that are important for the DNNs prediction, 

we applied Guided Gradient Class Activation Mapping ++ (Guided Grad-

CAM++), a technique for explanations in convolutional neural networks, 

to 1-dimensional data.5,6 Guided Grad-CAM++ combines the fine-grai-

ned and lead-specific visualizations of guided backpropagation with the 

class-discriminative and global Grad-CAM technique. The median beat 

visualization methodology is described in more detail in the Supplemen-

tal Material.

Validation of newly identified features in an 
updated model
Based on inspection of the visualization output, we identified distinctive 

features with an arbitrary prevalence above 25%. The detected important 

features were translated to quantitative features (e.g. R-wave amplitude) 

and added to the baseline logistic regression model, starting with the 

most prevalent. If multiple similar features were found in leads belonging 

to the same region, the most prevalent feature in that region was used. 

Leads I, aVL and V4-V6 were grouped as lateral leads and II, III and aVF 

as inferior leads. To evaluate the added value of the newly identified ECG 
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process. 
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features, we determined if the nested baseline logistic regression model 

fit improved using the likelihood ratio test (LRT) and Akaike’s information 

criterion (AIC).

Subgroup analyses
In subgroup analyses, we analyzed whether predictive performance and 

detected features differed between subsets of patients. Due to the small 

sample size, these exploratory subgroup analyses were performed on 

the combined training and test datasets. We investigated the performan-

ce in presymptomatic PLN p.Arg14del mutation carriers. Presymptomatic 

was defined as: no cardiac symptoms as per judgement of the treating 

physician, no history of (non-)sustained ventricular arrhythmia, premature 

ventricular complex burden of <500 beats per 24 hours and left ventricu-

lar ejection fraction ≥45%. 

Statistical analysis
The baseline characteristics were expressed as mean ± standard devia-

tion or median with interquartile range (IQR), where appropriate. Catego-

rical variable differences were tested using the chi-square test or Fisher’s 

exact test and continuous variables using the Student’s t-test or Mann 

Whitney U test. Multiple testing correction was performed for the baseli-

ne characteristics using Bonferroni’s method. The overall discriminatory 

performance of the DNN, baseline and updated models were assessed 

in the test set with the concordance-statistic (c-statistic) or area under the 

receiver operating characteristic (ROC) curve, sensitivities, specificities, 

positive and negative predictive values. The models were compared at a 

prespecified specificity of 94%.  The 95% confidence intervals (CI) around 

the performance measures and odd’s ratios were obtained using 2000 

bootstrap samples. All statistical analyses were performed using R ver-

sion 3.5 (R Foundation for Statistical Computing, Vienna, Austria). 

 Results

Study population
A total of 93 PLN p.Arg14del mutation carriers were identified, of which 

86 were eligible for this study. Four patients were excluded as all their 

ECGs were acquired after LVAD or heart transplantation and three patien-

ts as all their ECGs were non-sinus rhythm. The control group consisted of 

135,353 patients after exclusions, of which 1,720 patients were matched. 

The flowchart is shown in Figure 1 and the baseline characteristics in 

Table 1. 

Baseline logistic regression performance
The discriminative performance (by c-statistic) of the baseline logistic 

regression model was 0.84 (95% CI 0.73-0.92) in the test set. The most 

important predictor of the PLN mutation was the presence of low QRS 

voltage, followed by left precordial inverted T-waves. No significant effect 

of age, gender or right precordial negative T-waves was found. 

Figure 2.
Output of the 

Guided Grad-CAM 
visualization algorithm 

for all PLN mutation 
carriers and their 

controls.
¬Left: Mean of 

temporally normalized 
median 12-lead ECGs 

of both the PLN 
mutation carriers 
(blue) and control 

patients (red) with their 
respective standard 

deviations. Right: the 
same median ECG beat 

with the Guided Grad-
CAM output of the 

DNN superimposed to 
indicate the importance 

of a specific temporal 
segment for the 

classification of the 
DNN. The colormap 

represents the 
proportion of patients 

where that region was 
important (i.e. had a 
Guided Grad-CAM 

value above the 
threshold). Guided 
Grad-CAM: Guided 

Gradient Class 
Activation Mapping, 

PLN: phospholamban.
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Deep neural network performance
The cross-validated mean c-statistic, sensitivity, specificity and F2 score 

obtained in the training dataset were 0.86±0.07, 0.73±0.13, 0.91±0.04 and 

0.56±0.05, respectively. The c-statistic of the DNN, trained on the complete 

training dataset, was 0.95 (95% CI 0.91-0.99) in the independent test set. 

The mean ECG beats for the complete dataset with a superimposed Gui-

ded Grad-CAM visualization can be found in Figure 2. Figure 3 shows a re-

presentative example of a mutation carrier and a control subject that shows 

similar pre-established features (low QRS voltage and inverted T-waves) 

but is correctly identified by the DNN.

Feature detection
Based on the Guided Grad-CAM maps (Figure 2), we identified the following 

six most prevalent combined ECG segments: (i) R-waves in V2/V3 (58-99%), 

(ii) PR-interval (98%), (iii) T-waves in V2/V3 (36-89%), (iv) R-waves in I/aVL/V4-

V6 (34-59%), (v) R-waves in II/III/aVF (22-46%) and (vi) T-waves in I/aVL/V6 

(22-36%). Figure 4 shows correlation between the Grad-CAM maps and the 

human interpretation, on an individual level.

After inspection of the median beat and its standard deviation at these 

locations, the following most prevalent features per region were extracted 

from the ECG and added to the baseline logistic regression model: (i) maxi-

mum R-wave amplitude in V3, (ii) PR interval, (iii) T-wave peak voltage in V3, (iv) 

maximum R-wave amplitude in V6, (v) maximum R-wave amplitude in III and 

(vi) T-wave peak voltage in I. 

The updated logistic regression model’s c-statistic was 0.91 (95% CI 0.83 

- 0.97). The significantly associated baseline variables low QRS voltage and 

inverted left precordial T-waves remained significant in the updated model. 

The newly identified features were maximum R-wave amplitude in V3 and 

V6, the T-wave amplitude in I and V3 and the PR interval. The updated model 

had a better fit than the baseline model with an AIC of 388, compared to 461 

for the baseline model (LRT p<0.001). The performance measures of all three 

models are shown in Table 2. The odds ratios of the variables in the baseline 

and updated models are appreciated in Table 3. The summary measures for 

the quantitative translations of the newly identified features, that are added to 

Table 1.
Baseline 

demographics and 
electrocardiogram 

characteristics of all 
patients and patients 

in the training and 
test splits, stratified 
by phospholamban 

mutation carriers 
and their matched 

controls. PLN: 
phospholamban

Age, years, 
mean (SD)

44 (14) 44 (14)44 (15) 42 (16)44 (15) 42 (17)

n

Overall
Controls PLNPLN

Test
Controls

Train
Controls

1380 691720 34086 17

Female sex, 
n (%)

820 (59) 41 (59)1040 (61) 220 (65)52 (61) 11 (65)

PR interval,
ms, mean (SD) 

151 (24) 161 (27)151 (24) 149 (20)162 (28) 164 (34)

QRS interval, 
ms, mean (SD)

94 (15) 93 (18)93 (15) 93 (15)93 (19) 94 (20)

Maximum voltage 
extremity leads,
mV, mean (SD)

1.2 (0.38) 0.81 (0.45)1.2 (0.38) 1.2 (0.40)0.79 (0.43) 0.72 (0.39)

Maximum voltage
precordial leads,
mV, mean (SD)

2.2 (0.77) 1.8 (0.75)2.2 (0.80) 2.3 (0.89)1.8 (0.74) 1.5 (0.69)

Low QRS 
voltage, n (%)

27 (2.0) 22 (32)41 (2.4) 14 (4.1)31 (36) 9 (53)

T-wave 
morphology, n (%)

Aspecific 
abnormalities

48 (3.5) 20 (29)66 (3.8) 18 (5.3)27 (31) 7 (41)

Inverted in the 
extremity leads

25 (1.8) 12 (17)33 (1.9) 8 (2.4)14 (16) 2 (12)

Inverted in the right 
precordial leads

Inverted in the left 
precordial leads

28 (2.0)

41 (3.0)

9 (13)

20 (29)

34 (2.0)

49 (2.8)

6 (1.8)

8 (2.4)

10 (12)

22 (26)

1 (5.9)

2 (12)

QTc interval, 
ms, mean (SD)

422 (29) 427 (39)422 (29) 423 (26)429 (40) 434 (45)

PLN
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the baseline logistic regression model, are shown in Table 4.

Subgroup analyses
Performance was higher for symptomatic than presymptomatic patients, 

with c-statistics of 0.97 (95% CI 0.95-0.98) and 0.95 (95% CI 0.91-0.98), re-

spectively. Sensitivity was 86% for symptomatic patients (n = 75) and 64% 

for presymptomatic patients (n = 11), at a similar specificity of 94%. Guided 

Grad-CAM maps showed a difference in features between symptomatic 

and asymptomatic patients, where the prolonged PR-interval, attenuated 

R- and T-wave in V3 and attenuated T-wave in V6 were more important 

in presymptomatic patients while the overall attenuated R-waves were 

more prominent in symptomatic patients. The Guided Grad-CAM maps 

for presymptomatic and symptomatic patients are shown in Supplemental 

Figures 2 and 3.

Figure 3. 
Representative 

examples of an ECG 
of a PLN mutation 
carrier (top panel) 

and a control subject 
(bottom panel) with 

their respective DNN 
probability score 

for having the PLN 
mutation.

Note that the 
control subject ECG 

also exhibits the 
established PLN 

features (low QRS 
voltages and the 

presence of inverted 
T-waves in the left 

precordial leads) but 
is classified correctly 
as a control subject. 

The features as 
detected by the DNN 

(decreased R- and 
T-wave voltage in 

V3) can be used to 
distinguish the PLN 

mutation carriers and 
control subject. DNN: 
deep neural network, 

PLN: phospholamban.

PLN mutation carrier 

Control subject DNN estimated probability for having PLN: 23 %

DNN estimated probability for having PLN: 99 %
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T-wave morphology QRS voltage

p = 0.002

p < 0.001

p < 0.001

Figure 4. 
Relationship of the 
mean Grad-CAM++ 
importance value 
of the T-wave area 
with the human 
interpretation of the 
T-wave and of the 
QRS-complex area 
with the human 
classification of low 
QRS voltage in PLN 
patients.
In the temporally 
aligned Grad-CAM++ 
curves, the mean is 
taken for the area of 
the QRS-complex and 
the T-wave. A boxplot 
of the importance 
values (between 0 and 
1) of that region for the 
network for predicting 
PLN are shown in 
relationship with the 
human interpretation 
of the corresponding 
segments. Grad-
CAM++: gradient class 
activation mapping ++.
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Age per year 
increase

0.84
[0.73-0.92]

0.91
[0.83-0.97]

Male sex 0.96
[0.55 – 1.7]

1.17
[0.61 – 2.2]

Low QRS voltage 16.6
[8.1 – 34]

3.7
[1.5 – 9.0]

Left precordial 
inverted T-waves

7.4
[2.9 – 18]

4.5
[1.6 – 12]

Right precordial 
inverted T-waves

1.3
[0.37 – 4.2]

1.3
[0.33 – 4.9]

Right precordial 
inverted T-waves

- 0.37
[0.15 – 0.86]

Right precordial 
inverted T-waves

- 1.2
[1.1 – 1.3]

Right precordial 
inverted T-waves

- 1.13
[0.31 – 3.7]

Right precordial 
inverted T-waves

- 0.073
[0.0025 – 0.20]

Right precordial 
inverted T-waves

- 0.0013
[0.000013 – 0.06]

Right precordial 
inverted T-waves

- 3.5
[1.4 – 9.0]

Baseline Updated

Table 3.
Odds ratios and 95% 
confidence intervals 
for the variables in 
the baseline and 
updated logistic 
regression models 
for prediction of PLN 
mutation carrier 
status in the training 
dataset. The baseline 
model includes the 
currently established 
electrocardiogram 
features of 
phospholamban 
mutation carriers. 
Features identified 
by the deep neural 
network, translated 
into quantitative 
measures, are added 
in the updated model 
for validation of these 
features. 

R-wave voltage 
in V3, mV, 
median [IQR]

<0.0010.72
[0.47 – 1.1]

0.31
[0.19 – 0.61]

PR interval, 
ms, mean (SD) <0.001151 (24) 162 (28)

T-wave voltage 
in V3, mV, mean 
(SD)

<0.0010.46 (0.29) 0.28 (0.29)

R-wave voltage 
in V6, mV,
median [IQR]

<0.0010.66
[0.46 – 0.91]

0.28
[0.15 – 0.45]

T-wave voltage 
in I, mV, mean 
(SD)

R-wave 
voltage in III, 
mV, me-dian 
[IQR]

<0.001

<0.001

0.25 (0.15)

0.38
[0.18 – 0.72]

0.11 (0.15)

0.22
[0.09 – 0.56]

Controls PLN p-value

Table 4.
Summary measures 

of the quantitative 
translations of the 

newly identified 
electrocardiogram 

features of 
phospholamban 

mutation carriers. 
Most prevalent newly 

identified features 
for predicting the 
phospholamban 

mutation, as 
identified by the 

visualizations of the 
deep neural network, 

were translated 
into quantitative 

measures and tested 
in the updated logistic 

regression model 
for validation. PLN: 

phospholamban, SD: 
standard deviation, 

IQR: interquartile 
range, mV: millivolt, 

ms: millisecond..

C-statistic 
[95% CI]

0.95
[0.91-0.99]

0.84
[0.73-0.92]

0.91
[0.83-0.97]

Sensitivity 82%53% 76%

Specificity 93%94% 93%

Positive 
predictive 
value

37%33% 34%

Negative 
predicitive 
value

99%98% 99%

Baseline Updated

LOGISTIC
REGRESSION MODELS DNN

Table 2.
Discriminatory 

performance of the 
baseline and updated 

logistic regressions 
models and the deep 
neural network in the 
independent test set.

The baseline 
model includes the 

currently established 
electrocardiogram 

features of 
phospholamban 

mutation carriers. 
Features identified 
by the deep neural 
network, translated 

into quantitative 
measures, are added 
in the updated model 
for validation of these 
features. DNN: deep 

neural network, CI: 
confidence interval.
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Discussion 

In this study we demonstrate a novel DNN-based end-to-end approach 

that allows for detection and visualization of disease-specific ECG featu-

res. To the best of our knowledge, this is the first time DNNs have suc-

cessfully been applied as an ECG feature detector, in contrast to pre-

viously developed prediction algorithms. Using a unique combination of 

median ECG beats and visualizations, the algorithm was able to automa-

tically reveal established ECG features in PLN p.Arg14del mutation car-

riers (low QRS voltages and T-wave inversions), specify these features (R 

and T-wave attenuation in V2 and V3) and find novel features (increased 

PR-duration). Applying this promising concept in more cardiac diseases 

(especially rare or unknown ones) can potentially support physicians whi-

le reviewing ECGs, thereby improving ECG interpretation in daily clinical 

practice.

Previous literature
Several studies showed that DNNs can be used to make predictions from 

ECGs with a high performance.2–4,7,8 An example is the recent study by Ko 

et al., who developed a DNN to detect HCM, resulting in an AUC of 0.96.4 

From a clinical point of view, this network is very attractive, because this 

would allow the clinician to easily and automatically distinguish HCM in a 

screening setting. However, clinical implementation of such a network is 

still challenging for several reasons. Firstly, such networks are often seen 

as “black boxes”, and, secondly, the validity of these high-dimensional 

networks in external datasets is still unproven.

Similarly, we developed a DNN that recognizes ECGs of a specific 

patient population (i.e. PLN mutation carriers) with high diagnostic perfor-

mance.4 A different architecture was chosen, as it has an increased diag-

nostic performance in PLN mutation carriers and allows for more detailed 

visualizations. Unique to our study is the use of hard outcome data and 

the focus on feature detection, which may directly support clinicians with 

ECG interpretation in daily practice. Moreover, we show that these fea-

tures can be used in a relatively simple logistic regression model, which 

might be easier generalizable.

Disease-specific ECG features in PLN mutation carriers
This novel approach was validated in PLN mutation carriers, because 

typical ECG characteristics in these subjects have been described ex-

tensively before.10,12,14,15 PLN mutation carriers are at risk of developing an 

often biventricular phenotype of ARVC and/or DCM, and are typically cha-

racterized by subepicardial fibro-fatty replacement.21 This leads to an ECG 

with low QRS voltages, which can be seen both in the limb leads and in 

precordial leads.10,14 In addition, negative T-waves were previously descri-

bed in both the right precordial leads and in the left precordial leads.12,15 

Using this novel approach, we could correctly identify all of these pre-

viously described ECG features (Figure 2) and show that the network also 

uses the pre-established features for diagnosis (Figure 4). In addition, 

we could specify the leads in which these features are typically present. 

With the visualization tool, we found attenuated R-waves to be particu-

larly present in the lateral leads I, aVL and V6, and in the right precordial 

leads V2 and V3. While the low voltages in these mutation carriers are 

often measured as QRS peak-to-peak amplitude, we observed that these 

low voltages were only based on R-wave attenuation, while the S-wave 

seemed unaltered. Furthermore, we found attenuated/inverted T-waves 

to be typically present in leads V2, V3 and V6 (as described previously), 

but also in leads I and aVL. Besides the ECG characteristics that were 

already identified before in PLN mutation carriers, we also found an ECG 

feature, the PR-interval, that was not described before in these subjects. 

This was confirmed in the updated logistic regression model. Interestingly, 

a recent meta-analysis of genome-wide association studies also showed 

an association between a locus in the PLN gene and PR-interval, which 

already suggested that PLN plays a role in atrio-ventricular conduction.22 

In an exploratory analysis, the DNN performed well in both presymp-

tomatic and symptomatic mutation carriers. Our approach also suggested 

that particular features were more important in presymptomatic mutation 
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carriers (PR-interval and R- and T-wave attenuation in V2 and V3), as com-

pared to symptomatic carriers. This might indicate that our approach can 

be used in subgroups who are in different stages of a disease, to gain 

knowledge on the sequence in which ECG abnormalities naturally occur. In 

particular for PLN mutation carriers, it is important to gain knowledge on the 

first electrical changes, because this may improve early screening and risk 

stratification of presymptomatic mutation-carrying family members.

Employed methodology
The use of DNN for the analysis of data generally requires large amounts 

of balanced data but the group of PLN mutation carriers studied in this 

investigation contained only 86 patients. The focus on features detection 

instead of prediction in this paper, however, allowed the use of such small 

datasets, as we were able to reduce the highly dimensional DNN to a few 

important features. Moreover, to allow training on this extremely imbalan-

ced dataset, while also correcting for age and sex differences between 

mutation carriers and controls, we applied propensity score matching. 

In the present study we used ECG median beats as input for the DNN 

model, which allowed the network to focus on morphology rather than 

rhythm. The use of median beats prohibits detection of rhythm specific 

ECG features (e.g. premature contractions or heart rate variability) and 

can also not be used for detection of beat-to-beat ECG variations. To our 

best knowledge, this is the first study in which median beats are used for 

deep learning. 

Limitations
Firstly, although the proposed approach is feasible in small datasets, care 

should be taken while interpreting results derived from small cohort stu-

dies as findings may not hold up when evaluated on other cohorts. Espe-

cially the number of patients in the test set is a major limitation. To show 

clinical applicability of the ECG features and algorithm as described in 

this study, external validation studies should be performed. Secondly, for 

the PLN mutation carriers the clinical phenotype may be variable among 

mutation carriers. Therefore, it should be noted that this approach helps 

to visualize the most common ECG features on a group level, but impor-

tant ECG features that are present in small subgroups may be missed. 

Subgroup analyses in more homogeneous subgroups (e.g. presympto-

matic relatives) can be used to reveal important features in these specific 

subgroups. Thirdly, the ECGs of the control group were extracted from a 

large database in which additional patient specific characteristics are not 

available. Therefore, no comparisons or matching between both groups 

were possible to correct for other influencing factors. However, the ca-

se-control matching ratio of 1:20 used in this study presumably equali-

zed the groups, and the detected features align with literature on other 

PLN mutation carriers. Fourthly, the conduction intervals and P-, QRS- and 

T-wave boundaries are based on the automated GE algorithm, which mi-

ght cause inaccuracies. Boundary measurements on median beats have 

proven to be very accurate, however.23 Fifthly, the proposed approach is 

not possible for ECGs with arrhythmias or acute ischemia, as these (tem-

porary) conditions have a large influence on the morphology of the me-

dian beat. In this study, the algorithm is not intended to be used in these 

situations and only 3 patients were excluded for this reason. Finally, the 

visualization technique used in this paper, Guided Grad-CAM++, is one of 

the most frequently used techniques for fine-grained heatmaps but has 

limitations of its own.6 For example, guided backpropagation might be in-

dependent on the choice of the model or data generating process.24 The-

refore, we validated the detected features in a logistic regression model 

and showed that Grad-CAM++ values agree with the pre-established PLN 

ECG features. Feature visualization in DNNs is a new and developing field 

and future research should focus on improving visualization techniques 

for DNNs and applying them in ECGs.

Future perspectives
Future studies should be conducted applying this novel approach to other 

less well characterized diseases, such as new genetic mutations, to di-

scover novel ECG characteristics. The visualizations provide the end-user 

with feedback on the importance and location of detected ECG features. 

Moreover, future studies should consider elucidating the pathophysiolo-

gical mechanisms of newly identified ECG features by using other expe-

rimental methods such as (non-)invasive electrophysiological mapping. 
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The influence of the discovered ECG features on disease penetrance in 

asymptomatic carriers or progression of disease in symptomatic carriers 

should be examined with longitudinal ECG or outcome data. Finally, com-

bining our approach and a DNN trained on other cohorts with a focus on 

screening, such as family members of mutation carriers or large healthy 

population cohorts, might be of interest in clinical practice. Detection and 

visualization of possible carrier status in the ECG even before the genetic 

diagnosis is done could determine which family members or healthy indi-

viduals require genetic testing or follow-up.

Conclusion

This study demonstrated a novel DNN-based end-to-end approach that 

allows for detection and visualization of disease-specific ECG features. 

In a cohort of PLN p.Arg14del mutation carriers, the algorithm showed 

excellent diagnostic performance and revealed already established ECG 

features. Moreover, we were able to specify these features and to detect 

novel features. This novel way to use DNNs may help advance diagnostic 

capabilities in daily practice, especially in rare and new cardiac diseases.
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Abstract

Introduction
Phospholamban (PLN) p.(Arg14del) variant carriers are at risk of developing malignant ventricular 

arrhythmias (MVA). Accurate risk stratification allows for timely implantation of intracardiac 

defibrillators (ICD) and is currently performed using a multimodality prediction model. This 

study aims to investigate whether an explainable deep learning-based approach allows for risk 

prediction using only electrocardiogram (ECG) data.

Methods 
A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning-

based variational auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead 

baseline ECG into its FactorECG, a compressed version of the ECG which summarizes it into 32 

explainable factors. Prediction models were developed using Cox regression.

Results
The deep learning-based ECG-only approach was able to predict MVA with an AUC of 0.79 [95% 

CI 0.75 – 0.85], comparable to the current prediction model (AUC 0.83 [95% CI 0.79 – 0.88], p 

= 0.064) and outperforming a model based on conventional ECG parameters (low voltage ECG 

and negative T waves; 0.65 [95% CI 0.58 – 0.73], p < 0.001). Clinical simulations showed that a 

two-step approach, with ECG-only screening followed by a full work-up, resulted in 60% less 

additional diagnostics, while outperforming the use of the multimodal prediction model in all 

patients. A visualization tool was created to provide interactive visualizations (https://pln.ecgx.ai).

Conclusion
Our deep learning-based algorithm based on ECG data only accurately predicts the occurrence 

of MVA in PLN p.(Arg14del) carriers, enabling more efficient stratification of patients that need 

additional diagnostic testing and follow-up.

Graphical abstract
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Graphical abstract. First, an artificial intelligence algorithm (variational auto-encoder) was pretrained on 1.1 million ECGs to learn the 
underlying continuous factors that generate the ECG (i.e., the FactorECG). In this process, the VAE learns to reconstruct ECGs as 
accurate as possible using only 21 continuous factors without any human input. In the training phase, median beat ECGs of 679 PLN 
p.(Arg14del) patients were each converted into their FactorECG. Six factors were subsequently used as input in a Cox model to predict 
malignant ventricular arrhythmia (MVA), and compared to the current standard. A two-step approach, where echocardiographs and 
Holter monitoring was only performed in the group with high predicted risk based on the FactorECG outperformed the the current 
multimodal model, while needing significantly less diagnostic tests. The algorithm is explainable by using the decoder to visualize 
the effect of the ECG factors that significantly predicted MVA on the median beat ECG morphology. DNN; deep neural network, ECG; 
electrocardiogram, PLN: phospholamban, VA: ventricular arrhythmia.
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Introduction

Phospholamban (PLN) p.(Arg14del) cardiomyopathy is an inherited di-

sease caused by a pathogenic genetic variant in the gene encoding 

the phospholamban protein.1,2 This causes this protein to misfold, 

which in turn causes defects in the regulation of the sarcoplasmic re-

ticulum Ca2+ pump.3 This disturbance in the Ca2+ homeostasis of the 

cardiomyocyte eventually affects the composition of cardiac tissue, 

resulting in structural abnormalities such as cardiac fibrosis which 

cause, among others, distinct electrocardiographical changes (low 

QRS voltage in the extremity leads and negative T-waves).4–6 

The pathogenic PLN p.(Arg14del) variant is associated with an ar-

rhythmogenic or dilated cardiomyopathy characterized by progres-

sive heart failure, malignant ventricular arrhythmias (VA) and sudden 

cardiac death (SCD).7 All of these characteristics may already occur 

at a young age, but not all carriers of this genetic variant develop 

symptoms due to its incomplete penetrance. The PLN p.(Arg14del) 

genetic variant is a founder mutation in the Netherlands; its preva-

lence is estimated to be 1:500-1000 in large parts of the country. It 

has also been identified in several other countries including Spain, 

Greece, Vietnam, China, Japan, Canada, and the United States.8,9 

The relatively high prevalence in the Netherlands enables the com-

pilation of uniquely large datasets. 

There is no evidence-based disease-modifying therapy available 

for PLN p.(Arg14del) cardiomyopathy, though implantation of an im-

plantable cardiac defibrillator (ICD) may improve outcomes. Currently, 

affected patients are treated according to general clinical guidelines, 

with risk score algorithms being used to identify carriers at particular 

risk of MVA. The latest validated risk score algorithm uses data from 

Holter registration, electrocardiography (ECG), echocardiography, 

and cardiac magnetic resonance imaging (CMR).1

Current prediction models use manual interpretation of the ECG, 

but recent reports have shown that deep neural networks (DNNs), 

a type of artificial intelligence (AI), can be trained to discover more 

complex patterns in ECGs in order to diagnose PLN p.(Arg14del) 

cardiomyopathy.10,11 Although the need for very large data sets and 

the lack of interpretability were former common drawbacks of deep 

learning, a novel technique that uses a variational auto-encoder 

(VAE; the FactorECG) broadens the applicability of DNNs to much 

smaller data sets while also providing improved explainability (i.e. ex-

plaining which ECG morphology is associated with the outcome).12–14 

The aim of the current study is to evaluate whether this explainable 

deep learning based approach could be implemented to assess the 

risk of MVA using only ECG data, allowing clinicians to make more 

informed decisions regarding patient management while simultane-

ously reducing the total health care burden of this disease.
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Methods

Study population and clinical data acquisition
All index patients and relatives carrying the PLN p.(Arg14del) variant 

were identified from a large nationwide registry. Patients that were ge-

netically evaluated in the University Medical Center Utrecht, University 

Medical Center Groningen and Amsterdam University Medical Center 

between 2009 and 2020 were included in the current study. Clinical 

data were collected using chart review from the first clinical contact until 

last follow-up in both the university as well as non-university medical 

centers. Data acquired within one year of the first clinical contact and 

before the first event of MVA were used as baseline. Design and detai-

led data collection of the nationwide registry were described in detail 

before.15 This study followed the Code of Conduct and the Use of Data 

in Health Research and was approved by local ethics and/or institutional 

review boards.

Electrocardiographic data acquisition
All raw 10-second 12-lead ECGs of the included patients were extracted 

from the MUSE ECG system (MUSE version 8, GE Healthcare, Chicago, 

IL, United States) from the three university medical centers and resam-

pled to 500Hz using linear interpolation, if necessary. All ECGs were 

converted into median beats by aligning all primary QRS complexes 

(e.g. excluding premature ventricular complexes) and taking the median 

voltage.16 

Clinical outcomes
The primary outcome of MVA was defined as done previously as a com-

posite of sustained ventricular tachycardia (>30 seconds or terminated 

electrically or pharmacologically), ventricular fibrillation, appropriate ICD 

intervention or (aborted) sudden cardiac death.1

Explainable deep neural network
A recently developed approach that uses a DNN to learn explainable fea-

tures from the 12-lead median beat ECG was employed. These features are 

explainable in the sense that the clinician obtaining an output from the DNN 

can visualize the ECG morphology that was associated with the outcome.12 

In this approach, a generative deep neural network, called variational au-

to-encoder (VAE), is used to learn the underlying generative factors of the 

ECG without any assumptions. This VAE consists of three parts, an encoder, 

the FactorECG (32 continuous factors) and a decoder and was pretrained 

by learning to reconstruct 1,144,331 ECGs of 251,473 patients using only the 

32 factors. After training, the pretrained encoder can be used to convert 

any median beat ECG into its FactorECG, the distinctive set of 32 factors 

that represent that ECG. In the current analysis, we used these 32 conti-

nuous factors as input to the Cox and logistic regressions models (Figure 1).

The individual ECG factors can be made explainable on both the mod-

el-, and individual patient-level. This was done on the model-level by vary-

ing the values of the factors individually between -3 and 3, while generat-

ing the median beat ECG using the decoder. As the other factors are kept 

constant, the individual influence of that factor on the ECG morphology can 

679 PLN variant carriers
12-lead median beats

median beat
ECG

reconstructed
ECG

DNN
encoder

DNN
decoder

FactorECG
representation of full median beat in
32 continuous generative ECG factors

Malignant 
ventricular arrhythmia

Cox regression

A  Pretraining of 
VAE on 1.1 million 
ECGs

B  Training: FactorECG as input to Cox model

Figure 1.
Schematic overview 
of the applied deep 

learning-based 
strategy. In the 

pretraining phase, 
the variational auto-

encoder (VAE) is 
trained a data set of 

1.1 million median beat 
electrocardiograms 

(ECG) to learn to 
reconstruct the ECG as 
accurately as possible 

in 32 variables (the 
FactorECG; A).

In the training phase, 
the pretrained VAE 
encoder is used to 

convert the PLN variant 
carrier ECGs into their 

FactorECG (B). Of 
these, six ECG factors 
that were associated 

with reduced ejection 
fraction in a previous 
study were selected, 

and used in a Cox 
regression model to 

predict malignant
ventricular arrhythmia.

The pretrained 
decoder can be 

used to visualize 
which ECG features 

were important for 
prediction. DNN: deep 
neural network; ECG: 

electrocardiogram; 
VAE: variational auto-

encoder.
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be visualized. Patient-level explanations can be obtained by investigating 

the FactorECG values of that specific ECG and the coefficients of the pre-

diction model. This way, we could determine which factors were important 

in a specific patient to make the prediction. Interactive visualizations of the 

model are available on https://pln.ecgx.ai. The architecture and training pro-

cedures for the FactorECG have been described in detail before.12

Predictor variables
Three different sets of predictors were evaluated and compared. Two 

ECG-only predictor sets, one baseline with the accepted conventional 

ECG criteria (number of leads with negative T-waves and presence of 

low QRS voltage) and one with the standardised FactorECG values, were 

compared to the predictor set used in the multimodal prediction model 

(the two conventional ECG criteria, number of premature ventricular com-

plexes on Holter and left ventricular ejection fraction (LVEF)).1 Given the 

low number of events in this cohort, we selected the six ECG factors most 

associated with a reduced LVEF in a previous study to achieve at least 10 

events per predictor.12 Detailed definitions of all predictor variables were 

described before.1

Clinical utility
Potential consequences of using the different prediction models to de-

termine ICD implantation with different thresholds for 5-year risk of MVA 

were explored. For each model and threshold false positives (ICD but no 

MVA), true positives (ICD and MVA), false negatives (no ICD but MVA) and 

true negatives (no ICD and no MVA) were calculated. 

In addition to the three predictor sets, we evaluated a two-step ap-

proach where only patients with a high predicted risk using the ECG-only 

FactorECG model were referred for additional diagnostics. In that sub-

group, we simulated that an echocardiogram and 24h Holter monitoring 

was performed and if a carriers had an LVEF below 50% or more than 

500 PVCs/24 hours on Holter monitoring an ICD was implanted. The risk 

threshold for additional diagnostics was chosen at the best trade-off of 

positive and negative predictive value in the current cohort.

Statistical analysis
Multivariable Cox proportional hazards models were used to evaluate the 

effect of the three different predictor sets on the risk of MVA, while taking 

the time-to-event into account. For all models, the proportional hazards as-

sumption was verified and non-linear relationships were investigated using 

natural cubic splines. Multivariable hazards ratios (HR) were reported to in-

vestigate the effect of the different predictors on MVA. As the ECG factors 

were standardized, the HR was also used as a measure of importance for 

the individual ECG factors. Model fit was assessed and compared using 

Akaike’s Information Criterion (AIC).

As a result of the retrospective design, there were missing values in 

some predictor variables. Missing data was considered missing at random 

and multiple imputation using chained equations was performed (using all 

characteristics from Table 1 and the prespecified six ECG factors). Given a 

mean proportion of missing values of approximately 30%, we generated 

30 imputed datasets.17 Results on the imputed datasets were pooled using 

Rubin’s rules.

Internal validation of the discriminatory performance (as measured by 

Harrell’s C-statistic) was performed using a bootstrap-based optimism es-

timation technique. Here, all model development steps (including multiple 

imputation and pooling using Rubin’s rules) were repeated on 500 boot-

strap samples.18 Each new pooled model was tested on the original data 

and the optimism was defined as the mean difference between the C-sta-

tistic in the original and bootstrapped datasets. This value is subtracted 

from the apparent performance measure (i.e. the C-statistic in original data 

from a model fitted on the original data).19 These optimism-corrected mea-

sures have been shown to be an unbiased estimate of the generalizability 

of the model, without losing any data for training.20 The bootstrap samples 

were also used to determine the 95% confidence intervals (CIs) around the 

C-statistic. Permutations tests were used to compare the C-statistic from 

the different predictors sets. In addition, a net reclassification improvement 

(NRI) was computed.21 The NRI, sensitivity, specificity, positive and nega-

tive predictive values were derived at three different prespecified clinically 

used probability cutoffs: 5%, 7.5% and 10%.

Baseline characteristics were expressed as mean ± standard deviation 
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(SD), or median with interquartile range (IQR), where applicable. All statis-

tical analyses were performed using Python version 3.9. The Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis Statement for the reporting of diagnostic models was followed, 

where applicable.22

CHARACTERISTIC MISSING, N (%) OVERALL
(N = 679)

NYHA class > 1, n (%) 62 (9.1)0 (0)

1st degree family member with MVA, n (%) 91 (13)0 (0)

Low voltage ECG, n (%) 95 (15)61 (9)

NSVT on Holter, n (%) 67 (10)0 (0)

Number of leads with negative T-waves, n (%) 1 [0 – 2]120 (18)

Corrected QT duration (ms), median [IQR] 411 [398 – 430]260 (40)

Proband, n (%) 113 (17)0 (0)

Male sex, n (%) 294 (43)0 (0)

Age (years), median [IQR] 42 [27 – 55]0 (0)

24 h PVC count >500, n (%) 125 (31)273 (40)

LVEF, median [IQR] 54 [48 – 60]224 (33)

RVEF, median [IQR] 65 [50 – 65]146 (22)

MRI LGE, n (%) 77 (29)417 (61)

MVA, n (%) 72 (10)0 (0)

Duration of follow-up (years), median [IQR] 4.3 [1.7 – 7.4]0 (0)

Ventricular rate (bpm), median [IQR] 70 [62 – 81]260 (40)

PR duration (ms), median [IQR] 146 [134 – 164]260 (40)

QRS duration (ms), median [IQR] 86 [80 – 98]260 (40)
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Results

Study population
The total cohort consisted of 1067 PLN p.(Arg14del) variant carriers. After 

exclusion of patients with MVA at baseline (n = 65, 6%), patients without 

follow-up data (n = 221, 21%) and patients without any baseline test in the 

participating centers (n = 102, 9.6%), 679 PLN carriers were included in 

the analysis. Raw 12-lead ECG waveforms within one year of first presen-

tation were available for 472 (70%) patients and of these 419 (89%) were 

of adequate quality. Performance of the pretrained VAE for the included 

ECGs was good, with a Pearson correlation coefficient between original 

and reconstructed ECG of 0.89. A total of 72 patients (10%) reached the 

primary outcome of MVA during a follow-up of 4.3 years [IQR 1.7 – 7.4]. The 

composite consisted of appropriate ICD therapy, sustained VT/VF and 

SCD in 37, 26 and 9 patients, respectively. Additional baseline characteri-

stics are shown in Table 1.

Model performance 
The baseline ECG-only model (consisting of the number of negative T-wa-

ves and low QRS voltage as predictors) predicted MVA with an optimi-

sm-corrected c-statistic of 0.65 [95% CI 0.58 – 0.73]. The FactorECG mo-

del (consisting of 6 ECG factors) outperformed the baseline model with 

an optimism-corrected c-statistic of 0.79 [95% CI 0.75 – 0.85] (p < 0.001) 

and was comparable to the multimodal prediction model (optimism-cor-

rected c-statistic 0.83 [95% CI 0.79 – 0.88] (p = 0.064). The overall NRI for 

the FactorECG model compared to the baseline ECG-only was 32 [95% 

CI 14 – 51], with 44% [95% CI 28 - 69] more patients with MVA correctly 

moved upwards to the group with a risk over 7.5%. When comparing the 

FactorECG model to the multimodal prediction model, the NRI was 0.06 

[95% CI -0.05 – 0.16], with 4.5% [95% CI -4.2 – 14.1] more patients with MVA 

moved upwards to the group with a risk over 7.5%. This indicates that the 

Table 1.
Baseline 
characteristics of the 
study population. IQR: 
interquartile range, 
LGE: late gadolinium 
enhancement, LVEF: 
left ventricular 
ejection fraction, 
MRI: magnetic 
resonance imaging, 
NSVT: non-sustained 
ventricular arrhythmia, 
NYHA: New York 
Heart Association, 
RVEF: right ventricular 
ejection fraction, PVC: 
premature ventricular 
complex, VA: 
ventricular arrhythmia.



224 | Chapter 8 Explainable AI for Prediction of MVA in PLN | 225

FactorECG model identifies more patients with MVA than the baseline 

ECG-only model, without missing cases compared to the multimodal mo-

del. An overview of the NRI, sensitivity, specificity, positive and negative 

predictive values at different probability thresholds for all predictor sets 

can be found in Table 2.

Most important predictors in the FactorECG model were F1 (inferolat-

eral ST-segment and T-wave morphology, HR 0.61 [0.40 – 0.91]) and F5 

(inferolateral negative T-waves, HR 2.03 [1.34 – 3.07]), while in the mul-

timodal model LVEF (HR 0.96 per 1% increase [95% CI 0.94 – 0.98]) and 

24h PVC count (HR 1.33 per 1 log increase [95% CI 1.16 – 1.55]) were most 

predictive. Hazard ratios and confidence intervals for all prediction mod-

els are shown in Table 2. When using the three prediction models to 

stratify carriers in four quartiles using their predicted 5-year risk of MVA, 

a clear distinction in risk between the groups can be observed for the 

FactorECG and multimodal model (Figure 2A-C). In the lowest two risk 

groups, almost no events are observed for these models, while the base-

line ECG-only model is not able to distinguish groups without events. 

Threshold 5% 7.5% 10% 5% 7.5% 10% 5% 7.5% 10%

Se 80 52 45 100 92 82 95 90 78 90

Sp 36 75 83 48 63 73 62 71 78 75

PPV 7 12 14 11 14 16 13 16 18 18

NPV 97 96 96 100 99 98 100 99 98 99

NRI Ref Ref Ref 32* 32* 38* 14* 6 -4 NA

NRIe Ref Ref Ref 22* 44* 48* -2 -5 -9 NA

NRIne Ref Ref Ref 10* -12* -10* 16* 11* 5* NA

A. Baseline ECG-only B. FactorECG C. Multimodal

D
. 2

-s
te

p

Table 2.
Prognostic 
performance 
measures for the 
different predictor 
sets (A-C) at three 
different probability 
cut-offs and the two-
step approach (D).
The net 
reclassification 
improvement for 
predictor set B 
was computed in 
comparison to the 
predictor set A and 
for predictor set 
C in comparison 
to predictor set B. 
Se: sensitivity, sp: 
specificity, PPV: 
positive predictive 
value, NPV: negative 
predictive value, NRI: 
net reclassification 
improvement, NRIe: 
net reclassification 
improvement for 
patients with an 
event, NRIne: net 
reclassification 
improvement for 
patients without an 
event. *Statistically 
significant.

Clinical applicability
Different scenarios with varying thresholds for the 5-year predicted risk of 

MVA to determine which patients should get an ICD implantation (Figure 3) 

were investigated. At a clinically accepted 5-year risk threshold of 5% (1% 

risk per year), the baseline ECG-only model performed worst with a sensi-

tivity of 80% and specificity of only 36%. The FactorECG model outperfor-

med the baseline model with a sensitivity of 100% and specificity of 48%, 

while the multimodal model had a higher specificity of 62% at the cost of a 

lower sensitivity of 95%. A similar trend is observed at the higher 5-year risk 

thresholds of 7.5% and 10%, where significantly less ICDs are implanted but 

with more false negatives.

Next to the implementation of the models alone, a more clinical appli-

cable two-step approach was investigated (Figure 4). With this simulated 

approach, all patients first get an ECG, and then only in the high-risk pa-

tients as predicted by the FactorECG model, echocardiography and Holter 

monitoring data is needed. A threshold to determine which patients were 

high-risk of 7.5% was used as this provided the best trade-off of positive and 

negative predictive value (i.e. referring the least amount of patients without 
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D. Two-step approach
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Figure 2.
Kaplan-Meier plots for 
the different predictor 

sets (A-C) and two-
step approach (D). 
For the prediction 
models (A-C), the 
5-year predicted 

risk of MVA is split 
in four quartiles (risk 

groups). For the 
two-step approach, 

an approach was 
simulated where 

only patients with a 
high predicted risk 

(>7.5%) using the 
FactorECG model 
were referred for 

additional diagnostics. 
In that subgroup, we 

simulated that an 
echocardiogram and 

24h Holter monitoring 
was performed.
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missing too many patient with MVA). When applying this risk threshold, only 

40% of patients need to be referred. In this referred group we simulated 

an ICD implantation when either the LVEF was below 50% or more than 

500 PVCs/24 hours on Holter monitoring were recorded. This two-step ap-

proach outperformed all other models with a sensitivity of 90% and speci-

ficity of 75%. 

Model explainability
F1 (inferolateral ST-segment and T-wave morphology) and F5 (inferolateral 

negative T-waves) were significantly associated with the risk of MVA during 

follow-up, with more negative values corresponding to a higher risk for F1 

and more positive values for F5. Both these factors represent the shape of 

the inferolateral ST-segment and T-wave and are significantly correlated 

with each other in this population (Pearson r = -0.39, p < 0.001). The factor 

traversals of a combined change in F1 and F5 showed that this combination 

represents a change in ECG morphology from normal QRS voltage and 

repolarization towards lower QRS voltage and inferolateral symmetrical ne-

gative T-waves without any ST-deviation (Figure 5). Interestingly, the effect 

of this morphological change was non-linearly related with the predicted 

5-year risk of MVA and the risk already exceeded 5% when the T-waves 

are still positive (Figure 5). Other factors were not significantly correlated 

(Pearson r < 0.22 for all) in this population and their factor traversals are 

therefore shown for each factor individually in Supplementary Figures 1-3.

>5.0% >7.5% >10.0%
8 19 22
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411
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Figure 3.
Clinical utility plots 
for the different 
predictor sets (A-C) 
and the two-step 
approach (D). The 
bars represent the 
clinical implications 
of using different 
five-year risk of 
malignant ventricular 
arrhythmia thresholds 
for the decision to 
implant an implantable 
cardioverter 
defibrillator. For the 
two-step approach, 
an approach was 
simulated where 
only patients with a 
high predicted risk 
(>7.5%) using the 
FactorECG model 
were referred for 
additional diagnostics. 
In that subgroup, we 
simulated that an 
echocardiogram and 
24h Holter monitoring 
was performed and if 
a carriers had an LVEF 
below 50% or more 
that 500 PVCs/24 
hours on Holter an 
ICD was implanted.

PLN carriers

5-year risk >=7.5%5-year risk <7.5%

ECG-only  
FactorECG

model

No ICD
n = 416 (61%)

LVEF >=50% and
24h PVC count <= 500

LVEF <50% or
24h PVC count > 500

 
Echocardiography

and 24h Holter
n = 263 (39%)

No ICD
n = 76 (11%)

ICD
n = 187 (28%)

Figure 4.
Overview of the 

two-step approach, 
where an approach 

was simulated where 
all PLN variant carriers 

first get an ECG only. 
This ECG is evaluated 

by the FactorECG 
prediction model, 

and only the high-risk 
patients are referred for 

additional diagnostics 
(echocardiography and 
24h Holter monitoring). 

When carriers had an 
LVEF below 50% or 

more that 500 PVCs/24 
hours on Holter an ICD 

was implanted.
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Baseline ECG-only model

Number of leads with 
negative T-waves

0.031.12
[1.00 – 1.24]

Low QRS voltage <0.0013.52
[2.07 – 5.97]

FactorECG model

Factor 1 0.010.61
[0.40 – 0.91]

Factor 5 <0.0012.03
[1.34 – 3.07]

Factor 8 0.071.48
[0.97 – 2.25]

Factor 10 0.540.89
[0.62 – 1.29]

Factor 25 0.020.69
[0.52 – 0.93]

Factor 26 0.050.66
[0.44 – 1.00]

Multimodal model

Number of leads
with negative T-waves

0.101.10
[0.89 – 1.23]

Low QRS voltage 0.061.76
[0.98 – 3.20]

24h PVC count
(per 1 log increase)

<0.0010.96
[0.94 – 0.98]

LVEF (per % increase) <0.0011.34
[1.16 – 1.54]

HR [95% CI] p-value

Table 3.
Hazards ratios, 
confidence intervals 
and p-values for the 
different predictor 
sets evaluated in 
multivariable Cox 
proportional hazard 
models. 

Discussion

This study shows that an explainable deep learning-based approach using 

only ECG data was able to predict the risk of MVA with an optimism-cor-

rected c-statistic 0.79 [95% CI 0.75 – 0.85] in a large cohort of PLN p.(Arg-

14del) carriers. Addition of echocardiographic and Holter monitoring data 

in the group with high predicted risk based on the FactorECG improved 

predictive ability further (i.e. a two-step approach), outperforming the use 

of the current multimodal model in all patients. Such two-step approach 

could allow for more efficient risk stratification of PLN p.(Arg14del) carriers, 

reduce the burden of monitoring visits for these carriers, and lead to a 

significant decrease in costs by reducing the number of visits, diagnostics 

and ICD implantations. Deep learning-based ECG analysis may enhance 

the possibilities for remote monitoring of genetic variant carriers. An on-

line tool to convert any ECG into its FactorECG and predict prognosis in 

PLN patients, is available through (https://pln.ecgx.ai). 

Clinical applicability and prior studies
This is the first study attempting risk stratification in carriers of the PLN 

p.(Arg14del) genetic variant using only ECG data. The current best practi-

ce in risk stratification of known PLN p.(Arg14del) carriers involves the use 

of a risk score combining structural, electrophysiological and functional 

parameters.1 This multimodal algorithm has an optimism-corrected c-stati-

stic of 0.83 [95% CI 0.79 – 0.88] in the current analysis. While an ECG-only 

model containing conventional ECG features of PLN cardiomyopathy (low 

QRS voltage and negative T-waves) was not able to reach similar predicti-

ve performance (optimism-corrected c-statistic 0.65 [95% CI 0.58 – 0.73]), 

the deep learning-based ECG-only model did perform comparably (opti-

mism-corrected c-statistic 0.79 [95% CI 0.75 – 0.85]). Net reclassification 

analysis confirmed that the FactorECG algorithm outperformed the base-

line ECG-only model at all risk thresholds, without missing patients with 
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MVA within 5 years compared to the multimodal algorithm (Table 2).

Clinically, such an ECG-only algorithm could be used in a two-step 

approach involving a first pass using the ECG model alone, followed by 

additional diagnostics in subjects deemed at-risk of MVA. If acceptable 

NPVs can be achieved with only ECG (possibly at home or by the general 

practitioner), the large burden of monitoring visits could be reduced, es-

pecially for asymptomatic carriers. Whereas the conventional ECG-only 

model did not reach adequate NPVs to be usable in such an approach, 

the FactorECG model was able to reach a NPV of 99% in 60% of the pa-

tients at a five-year risk threshold of 7.5%. As visualized in Figure 3, this 

results in more accurate risk prediction than either method alone, as well 

as being more accurate than using the multimodal model in all patients.

The presence of the PLN p.(Arg14del) genetic variant is established 

via genotyping of potentially affected index patients presenting with relat-

ed signs and symptoms, followed by genetic cascade-screening in close 

family members. Both Bleijendaal and Van de Leur et al. have shown that 

a deep learning-based approach may aid in the diagnosis of the genetic 

variant in the general population as well, aiding in the identification of 

the aforementioned index patients.10,11 This study builds upon their results 

by providing the risk stratification required for optimal management after 

initial diagnosis.

Explaining the AI algorithm
The term ‘black box’ is often used to describe models resulting from the 

extensive training of a machine learning algorithm.23 These models may 

become too complex to be interpreted by humans using them to reach 

an output from a given input, which in turn may cause a level of distrust in 

the output.24 Our approach provides improved explainability by allowing 

clinicians to visualize the influence of specific median beat ECG morpho-

logy on the predictions.12,25 Previous studies have shown that a similar 

approach using the FactorECG can be used to predict risk of MVA in dila-

ted cardiomyopathy patients and outcomes in cardiac resynchronization 

therapy recipients.13,14

Our visualizations confirm that the FactorECG prediction is mostly 

based on known PLN cardiomyopathy ECG features (e.g. reduced QRS 

voltage and inferolateral symmetrical negative T-waves as represented 

by the combinations of F1 and F5), as shown in Figure 5. Interestingly, it 

uses these features as a continuous spectrum and already predicts a 

risk higher than the threshold of 5% before the appearance of negative 

T-waves, but only with a reduced R- and T-wave height. This might ex-

plain why the model outperforms the baseline ECG-only model, as this 

uses binary cut-off points for QRS voltage and negative T-waves. Other 

ECG features shown by the visualizations are an increased PR-interval (F8, 

Supplemental Figure 1), rSR’ in V1 with slurred S-waves inferolaterally (F25, 

Supplemental Figure 2) and reduced lateral T-wave height (F26, Supple-

mental Figure 3), although all borderline significant (Table 2). We expect 

that this direct input-output relationship makes using the algorithm a more 

attractive option to clinicians by increasing trust in the outcome. An inter-

active tool for explainability is available through: https://pln.ecgx.ai. 

Figure 5.
Factor traversals for 

the two most important 
electrocardiogram 
factors to visualize 

ECG features that the 
model used to predict 
malignant ventricular 

arrhythmia (MVA).
In the current plot, we 

varied the values for 
Factor 1 and Factor 

5 simultaneously 
as these factors are 

strongly correlated in 
the current population, 

while keeping the other 
factors constant at 

their mean value. For 
each combination the 
five-year risk of MVA 
is derived using the 

Cox regression model 
and visualized. MVA: 
malignant ventricular 

arrhythmia. 
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Strengths and limitations
The main strength of this study is that the PLN registry allowed for le-

veraging a uniquely large cohort of deeply phenotyped PLN p.(Ar-

g14del) carriers.15 However, there are several limitations to this study. First-

ly, no external validation for the prediction models or the risk thresholds in 

the two-step scenario analysis could be performed, as there are currently 

no other cohorts of PLN p.(Arg14del) carriers available. To minimize the risk 

of overoptimism, we prespecified our predictor sets before the analysis, 

selected a limited number of predictors in every model and performed a 

rigorous internal validation using a bootstrap-based resampling techni-

que.20 The retrospective nature of the data comes with missing values; 

260 (38%) PLN p.(Arg14del) carriers were without a baseline raw ECG of 

adequate quality available for analysis. The primary outcome of MVA was 

defined as a composite of several endpoints, one of which was appro-

priate ICD intervention. Thus, appropriate ICD intervention was given the 

same weight as sudden cardiac death or ventricular fibrillation, similar to 

the current prediction model in PLN p.(Arg14del) variant carriers. This may 

result in an overestimation of the true 5-year risk of sudden cardiac death 

since not all appropriate ICD interventions equate cardiac arrest. 

Future perspectives
A machine learning based approach could aid in both diagnosis of the 

cardiomyopathy-associated variant as well as risk stratification to help cli-

nicians more efficiently organize their healthcare system. Currently, the 

PLN p.(Arg14del) genetic variant is mainly prevalent in the Netherlands. 

More affected families and relatives are identified, both in the Nether-

lands and abroad, and the healthcare burden of diagnosis and risk as-

sessment will rise. This is of importance due to rising healthcare costs in 

some nations and due to high barriers to accessing healthcare in some 

nations, that could manage this patient group by providing a remote solu-

tion. Moreover, the approach used in this study may also be of use for re-

searchers studying other uncommon types of (genetic) cardiomyopathy.

Conclusion

An ECG-only explainable deep learning-based algorithm is able to predict 

the occurrence of MVA in PLN p.(Arg14del) carriers with an optimism-cor-

rected c-statistic 0.79 [95% CI 0.75 – 0.85], which could allow for an alter-

native stratification relying on the ECG only, precluding additional diagno-

stics and follow-up. Such two-step approach could reduce the burden 

of monitoring visits for PLN p.(Arg14del) carriers, and lead to a significant 

decrease in costs by reducing the number of visits, diagnostics and ICD 

implantations. 
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Abstract

Abstract

Aims
While electrocardiogram (ECG) characteristics have been associated with life-threatening 
ventricular arrhythmias (LTVA) in dilated cardiomyopathy (DCM), they typically rely on human 
derived parameters. Deep neural networks (DNN) can discover complex ECG patterns, but 
interpretation is hampered by their ‘black-box’ characteristics. We aimed to detect DCM 
patients at risk of LTVA using an inherently explainable DNN. 

Methods and Results
In this two-phase study we first developed a variational autoencoder DNN on more than 
1 million 12-lead median beat ECGs, compressing the ECG into 21 different factors (F): 
factorECG. Next, we used two cohorts with a combined total of 695 DCM patients and 
entered these factors in a Cox regression for the composite LTVA outcome, which was 
defined as sudden cardiac arrest, spontaneous sustained ventricular tachycardia, or 
implantable cardioverter-defibrillator treated ventricular arrhythmia. Most patients were 
male (n=442, 64%) with a median age of 54 years [interquartile range (IQR) 44-62], and 
median left ventricular ejection fraction of 30% [IQR 23-39]. A total of 115 patients (16.5%) 
reached the study outcome. Factors F8 (prolonged PR-interval and P-wave duration, p < 
0.005), F15 (reduced P-wave height, p = 0.04), F25 (increased right bundle branch delay, 
p = 0.02), F27 (P-wave axis p < 0.005) and F32 (reduced QRS-T voltages p = 0.03) were 
significantly associated with LTVA.

Conclusion
Inherently explainable DNNs can detect patients at risk of LTVA which is mainly driven by 
P-wave abnormalities.

Introduction

Patients with non-ischaemic dilated cardiomyopathy (DCM) have an esti-

mated annual risk of life-threatening ventricular arrhythmias (LVTAs) of 4.5% 

and may potentially benefit from implantable cardioverter-defibrillator (ICD) 

implantation.1,2 A novel risk model (DCM-SVA risk) for predicting LTVA was 

recently published and includes easily accessible clinical parameters, such 

as history of non-sustained ventricular tachycardia (VT), QRS duration and 

left ventricular ejection fraction (LVEF).3 More complex electrocardiogram 

(ECG) characteristics such as fragmented QRS waves, heart rate variabi-

lity and t-wave alternans have also been associated with LTVA, but rely 

on manually derived ECG parameters that remain difficult to standardize, 

hampering their integration into daily clinical practice.1 By using raw ECG 

signals and machine learning techniques, manual feature extraction is not 

necessary. Moreover, novel and more subtle parameters may be detected.4 

Deep neural networks (DNN) have proven to be potent machine learn-

ing algorithms for diagnostic classification tasks using raw ECGs signals. 

Previous studies using DNNs on raw ECG signals in cardiomyopathies re-

port high performance in disease classification and triaging.5,6 However, be-

cause of the inherent lack of “explainability” of DNNs, clinical implementa-

tion remains limited.7 Different techniques may assist in interpreting DNNs. 

A recently introduced pipeline for fully explainable DNNs for ECG analysis 

uses variational autoencoders (VAE)8, that can compress the ECG into a 

lower number of explanatory and independent generative factors (facto-

rECG), which can subsequently be used in interpretable algorithms (such 

as Cox regression).9

In this study, we aimed (i) use an inherently interpretable DNN for pre-

dicting potentially LTVA based on ECGs in patients with non-ischemic DCM, 

assess its added value above conventional ECG parameters and current 

guidelines, and (ii) interpret the model by visualizing pivotal ECG features.
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Methods

Study participants
In this retrospective cohort study, we included consecutive adult patients 

with DCM as defined by the European Society of Cardiology (ESC) guideli-

nes were included from the UMCU and MUMC+.2 Only patients with a base-

line non-paced 12-lead ECG acquired before Left Ventricular Assist Device 

(LVAD) implantation or Heart Transplantation (HTx) were eligible. Patients with 

a cardiac resynchronisation therapy (CRT) were excluded, as it positively af-

fects reverse remodelling which may reduce arrhythmias.10 This study was 

conducted in accordance with the principles laid out in the Declaration of 

Helsinki and in line with guidelines provided by ethics committees and natio-

nal GDPR legislature. The participants from the UMCU cohort were included 

using the opt-out procedure. The UMCU cohort was exempt from the Medi-

cal Research Involving Human Subjects Act (WMO) as per judgement of the 

Medical Ethics Committee (18/446 and 19/222 UMCU, the Netherlands) inclu-

ding the requirement for informed consent. The participants of the Maastricht 

cohort signed informed consent at enrolment.

Data acquisition
For all subjects, the ECG closest to the date of first presentation was 

obtained which was considered “baseline” for the purpose of this study. 

The median time between diagnosis and ECG was 0 [IQR 0-28] days. 

All ECGs were exported from the MUSE ECG system (version 8; GE He-

althcare, Chicago, IL, USA) in raw voltage format. The recordings were 

made using a General Electric MAC V, 5000 or 5500 device and acqui-

red at either 250 or 500 Hz. Resampling to 500 Hz was performed via 

linear interpolation and transformation into 1.2-second median beats was 

achieved by aligning all QRS-complexes of the same shape (e.g., exclu-

ding premature ventricular complexes) and taking the median voltage to 

generate a representative P-QRS-T complex. Echocardiographic measu-

Figure 1.
Overview of the 
pretraining and 

training phases of the 
FactorECG algorithm.
During the pretraining 

phase, 1.1 million 
12-lead median 

beat ECGs were 
included for training 

of the variational 
autoencoder (VAE). 

The VAE was trained 
to compress all 
12-lead median 

beat ECGs into 21 
continuous factors 

of variation (the 
FactorECG), that can 

subsequently be used 
to reconstruct the 

median beat ECG. The 
VAE is explainable 
by visualizing the 

influence of the 
individual ECG 

factors on the ECG 
morphology using 

the decoder. In the 
training phase, for 

each of the 695 DCM 
patients, median beat 
ECGs were encoded 

into 21 generative 
factors using the 

pretrained encoder. 
These 21 generative 

ECG factors were 
used as an input in 

a Cox regression 
model to predict life-

threatening ventricular 
arrhythmias. The 

importance of each 
ECG factor was 

then determined 
by investigating the 
hazard ratios of the 

standardized ECG 
factors. DCM: dilated 

cardiomyopathy, DNN: 
deep neural network, 
LTVA: life-threatening 

ventricular arrhythmia.

rements were extracted from the electronic health record using methods 

described before.11

Pretraining and explainability of the variational auto-
encoder 
A two-phase approach was used in this study, where a VAE was first pre-

trained on the complete UMCU ECG dataset, and them used in the training 

step to find associations with LTVA (Figure 1). VAEs are unsupervised deep 

learning encoder-decoder convolutional neural networks that are optimi-

zed to reconstruct their training data with a lower-dimensional representa-

tion (i.e., using less data) than the original training data (in this case ECGs). 

The current VAE network is enforced with a specific function to reach maxi-

mum disentanglement of lower-dimensional representation (i.e., to produce 

generative factors in the ECG that operate independently: the FactorECG).12 

Resting 12-lead 10-second ECGs of 251,473 unique patients (1,114,331 ECGs) 

were exported from the UMCU ECG system and used for pretraining of the 

VAE. In a prior study, the optimal number of dimensions was found to be 

21, considering the trade-off of good reconstruction disentanglement and 

encoding for visible ECG abnormalities.8 

DNN
encoder

1.1 million
12-lead 

median beat
ECGs

DNN
decoder

12-lead
reconstructed
median beat
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21 generative ECG factors

representation of full median beat 
in 21 continuous interpretable features
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Cox regression
21 ECG factors as input

Prediction of LTVA
Interpretable results as

interpretable ECG factors are used

695 median beat
ECGs of

DCM patients

Training phase
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Explainability of the individual factors was obtained on a model 

level using factor traversals. Starting with a mean FactorECG for this 

population (ie. the mean value of the 21 ECG factors), a median beat 

ECG is reconstructed using the decoder. Subsequently, for each in-

dividual ECG factor, values between -4 and 4 are added and ECGs 

are reconstructed for every value. Meanwhile, values for the other 

factors are kept constant. This way we are able to visualize the effect 

of a single ECG factor on the median beat ECG morphology in this 

cohort (Figure 2). On the individual patient level, explainability is ob-

tained by investigating the FactorECG values of that specific ECG. A 

tool to visualize the factors interactively can be found at https://dcm.

ecgx.ai. The architecture and model training process were imple-

mented using PyTorch (version 1.7.0+cu110) in Python (version 3.6.7). 

Outcome definitions
The primary study outcome was LTVA, defined as the composite outcome 

of sustained ventricular tachycardia (VT) >100 bpm lasting >30sec or with 

hemodynamic compromise, ventricular fibrillation (VF), sudden cardiac 

death (SCD, defined as death of cardiac origin that occurred unexpecte-

dly within one hour after the onset of new symptoms) or appropriate ICD 

therapy (defined as any ICD therapy delivered by the device in response 

to VT or VF according to stored intracardiac electrograms).3

Statistical analyses
For the baseline table, mean ± SD or median [interquartile range] were 

used where appropriate. Missingness in baseline data were not ad-

dressed. Each baseline ECG’s generative factors (the FactorECGs, as 

computed by the VAE encoder) were included in a Cox proportional haz-

ards model (Figure 1). All patients had a digitalized ECG available. The 

proportional hazards assumption was tested. Hazard ratios (HR) were 

reported, and 95% confidence intervals were computed using 2000 

bootstrap samples. To rule out that the VAE model was solely consider-

ing already established ECG characteristics (ventricular rate, PR-interval, 

QRS-duration and Bazett corrected QT-interval), a Cox proportional haz-

ard model was also fitted using these variables in a complete case anal-

Figure 2.
Factor traversals for 
the ECG factors that 

were associated with 
LTVA in the DCM 

cohort.
We start with a mean 

FactorECG for this 
population (ie. the 
mean value of the 

21 ECG factors) and 
reconstruct an ECG 

using the decoder 
(white). Subsequently, 

for each individual 
ECG factor, values 
between -4 (blue) 

and 4 (red) are 
added and ECGs 

are reconstructed 
for every value. 

Meanwhile, values for 
the other factors are 

kept constant. This 
way we are able to 

visualize the effect of 
a single ECG factor 
on the median beat 

ECG morphology 
in this cohort. For 

factors 8 and 32, high 
values of the factors 

were associated 
with a higher risk 
of LTVA (left). For 

factors 15, 25 and 
27, conversely, low 

values of the factors 
were associated 

with a higher risk 
of LTVA (right). The 

FactorECG decoder 
reconstructs the full 
12-lead median beat 

ECG, a selection of 
leads is shown in this 

figure. DCM: dilated 
cardiomyopathy, 

LTVA: life-threatening 
ventricular arrhythmia.

ysis. The correlations of the significant ECG factors were plotted against 

the left atrial (LA) dimension and left atrial volume index (LAVI) measured 

on standard care clinical echocardiography using both the first (closest 

to baseline) and last (closest to follow-up) available measurements.11 Ad-

ditionally a Kaplan Meier curve was plotted for one of the significant VAE 

generative factors. All analyses were performed using Python (version 

3.8.5). 

FactorECG value highlow

Risk of LTVA higher risklower risk

FactorECG valuehigh low

Risk of LTVAlower risk higher risk
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Results

Patient characteristics
Baseline characteristics stratified by centre and outcome are depicted 

in Table 1. A total of 695 patients were included from the UMCU and 

MUMC+, which were predominantly male (n=442, 64%) with a median 

age of 54 years [interquartile range (IQR) 44-62] and median LVEF of 

30% [IQR 23%-39%]. A total of 115 (17%) reached the study outcome in 

both centres combined during a median follow-up of 4.3 years [IQR 2.0 

– 7.5]. In summary, patients from the MUMC+ cohort had less severe 

symptoms at baseline with primarily New York Heart Association classes 

I and II as opposed to the UMCU cohort with primarily II and III, and a 

median LVEF of 33% [IQR 25-40]. A lower proportion of MUMC+ patients 

(25, 6%) reached the study outcome of LTVA compared to 90 (28%) 

UMCU patients. 

Prediction of LTVA with established ECG variables
Established ECG variables (such as ventricular rate, PR-interval, QRS-du-

ration, and QTc-time) were entered in a “baseline” Cox regression mo-

del controlled for guideline indication (complete case analysis with n = 

577, excluding patients without a measurable PR-interval (n = 118, due 

to atrial fibrillation/flutter)). This baseline model had a C-statistic of 0.58 

[95% CI 0.52 – 0.64] and no significant effects of: ventricular rate (HR 

0.94 per 10 beat/s increase [95%CI 0.81-1.09], p = 0.41), QRS duration 

(HR 1.08 per 10 ms increase [95% CI 0.98-1.19], p=0.13) and QTc-time (HR 

0.95 per 10 ms increase [95% CI 0.88-1.03], p = 0.19). The PR-interval was 

however significantly associated with LTVA (HR 1.06 per 10 ms increase 

[95%CI 1.00-1.13], p = 0.04). The results of this model are depicted in 

Supplementary Table 1. 

UMCU 
with LTVA 
(n=90)

MUMC all 
(n=378)

UMCU all 
(n=317)

MUMC 
without 
LTVA 
(n=353)

MUMC 
with 
LTVA 
(n=25)

Age (years),
median [Q1-Q3]

52 [42-62] 55 [47 – 63]52 [42 – 61] 56 [47-63] 54 [49-63]51 [41 – 60]

UMCU 
without 
LTVA 
(n=227)

Male Sex 66 (74%) 247 (65%)195 (62%) 228 (65%) 19 (76%)129 (57%)

NYHA-class

I 17 (23%)* 158 (42%)53 (20%)* 150 (43%) 8 (32%)36 (18%)*

II 31 (41%)* 175 (46%)102 (39%)* 163 (47%) 12 (48%)71 (36%)*

III 23 (32%)* 37 (10%)79 (30%)* 32 (9%) 5 (20%)56 (28%)*

IV 4 (5%)* 8 (2%)27 (10%)* 8 (2%) 0 (0)%36 (18%)*

Prediction of LTVA with FactorECG
The VAE compressed the ECG data into 21 different ECG factors and 

their factor traversals are available in Supplementary Figure 1. In Cox 

regression, F8 (HR 1.60; 95%CI [1.29-1.99], p < 0.005), F15 (HR 0.81; 95%CI 

Diabetes 
Mellitus

11 (12%) 52 (14%)42 (13%) 50 (14%) 2 (8%)31 (13%)

Hypercho-
lesterolemia

11 (13%) 41 (11%)37 (13%) 38 (11%) 3 (12%)26 (13%)

(Ever) smoked 57 (63%) 77 (20%)203 (64%) 72 (20%) 5 (20%)145 (64%)

History of LTVA 25 (27%) 8 (2%)42 (13%) 7 (2%) 1 (4%)17 (7%)

Family history 
of DCM

36 (40%) 47 (14%)133 (42%) 39 (11%) 8 (32%)97 (43%)

ICD 
implantation

88 (97%) 0 (0%)233 (74%) 0 (0%) 0 (0%)145 (63%)

LVEF (%), 
median [Q1-Q3]

25 [19-32] 33 [25-40]25 [20-33] 28 [22-37] 33 [25-41]25 [20-33]

MRI LGE 24 (71%**) n/a84 (56%**) n/a n/a60 (51%*)

Table 1.
Patient

characteristics 
at baseline (first 

evaluation) stratified 
by centre and 

outcome.
Baseline 

characteristics 
of the included 

cohorts. NYHA = 
New York Heart 

Association; LTVA 
= Life Threatening 

Ventricular 
Arrhythmia; ICD 

= Implantable 
Cardioverter-

Defibrillator; LVEF 
= Left Ventricular 

ejection fraction; * = 
of valid, in patients 
for which a NYHA 

class was noted 
in the electronic 

health record. MRI 
LGE = Magnetic 

Resonance Imaging 
Late Gadolinium 

Enhancement. ** = of 
valid, in patients with 

cardiac MRIs. 
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[0.66-0.99], p = 0.04), F25 (HR 0.77 95%CI [0.62 – 0.95], p = 0.02), F27 (HR 

0.71, 95%CI[0.57–0.88], p < 0.005) and F32 (HR 1.26, 95%CI [1.03–1.55], p 

= 0.03) were significantly associated with the outcome after correcting 

for guideline indication (NYHA II/III and LVEF < 35%, p = 0.84). C-sta-

tistic for the model was 0.67 [95% CI 0.62 – 0.72]. A reconstruction 

of the significant generative factors (F8,  F15, F25, F27 and F32) has been 

illustrated in Figure 2. F8 encodes for PR-interval and P-wave morpho-

logy, where high values increase PR-interval and broaden the P-wave. 

F15 encodes for P-wave height and P/T-overlap, where low values are 

correlated with atrial fibrillation and third-degree AV-block. F25 enco-

des for conduction delays in the right bundle (right bundle branch 

block), where low values increase the block. F27 encodes for P- and 

R- axis deviation, where low values flatten out the P-wave. F32 encodes 

for QRS-T amplitudes, with low values reconstruct QRS-T microvolta-

ges. Results of the Cox regression model and the descriptions of the 

generative factors are present in Table 2 and Supplementary Table 2. 

Factors Factor descriptions
Hazard
Ratio

95%
Confidence Interval P-value

F10 Ventricular rate 0.93 0.76-1.13 0.46

F6 P-wave height
and/or shape

1.14 0.90-1.44 0.27

Inferolateral ST deviation 0.91 0.72-1.14 0.39F1

F5 Inferolateral T-wave
height and orientation

1.17 0.92-1.48 0.19

F8* PR-interval (high values
associated with first 
degree AV-block and 
reduced LVEF)

1.61 1.29-1.99 <0.005

F9 T-wave height
and orientation

1.12 0.89-1.39 0.34

Table 2.
Cox proportional 

hazards model of 
generative factors in 

both cohorts.
Results of Cox 

regression and 
explanation 

of (significant) 
factors including 
their association 

with known 
electrocardiographic 

and 
echocardiographic 

pathologies as 
described in Van de 

Leur and Bos et al 
(2022)8. *significant

F12 Onset of depolarisation 1.08 0.86-1.36 0.50

F11 Subtle P-
and T-wave changes

1.00 0.83-1.21 0.97

F13 Anterior ST deviation 0.85 0.68-1.06 0.14

F15* P-wave height and 
P/T-overlap (low values 
associated with third 
degree AV-block and 
junctional tachycardia)

0.81 0.66-0.99 0.04

F16 T-wave morphology 1.14 0.94-1.40 0.19

F17 Lateral ST-deviation 1.08 0.85-1.38 0.51

F19 Precordial R-wave 
progression and combined 
P-QRS-T-amplitude

1.07 0.87-1.33 0.51

F22 Subtle T-wave changes 1.02 0.83-1.25 0.85

F23 P-wave height
and/or shape

1.13 0.93-1.37 0.21

F25* Right bundle branch 
delay (low values 
associated with ventricular 
tachycardia, RBBB and 
reduced LVEF)

0.77 0.62-0.95 0.02

F26 Left bundle branch delay 1.02 0.81-1.29 0.85

F27* P- and R- axis deviation 
(low values associated 
with AF, junctional 
bradycardia, ventricu-lar 
tachycardia, and left axis 
deviation)

0.71 0.57-0.88 <0.005

F30 QR interval 0.92 0.74-1.16 0.48

F31 QRS-T amplitudes 0.86 0.71-1.05 0.15

F32* QRS-T amplitudes
(high values associated 
with microvoltages)

1.26 1.02-1.55 0.03

Factors Factor descriptions
Hazard
Ratio

95%
Confidence Interval P-value
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Example 1 Example 2

FactorECG FactorECG

Predicted 5-year LTVA risk: 9.7%

True time-to-LTVA: never (5.3 years FU)

Predicted 5-year LTVA risk: 83%

True time-to-LTVA: 0.8 years
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Figure 3.
Kaplan Meier curve 
and examples for the 
predictive value of 
factor 8.
A Kaplan Meier (A) 
for factor 8 and 
(B) two ECGs of 
patients with a low 
and high predicted 
five-year LTVA risk 
are depicted. The 
values for each factor 
are depicted below 
the ECG, along with 
the outcomes of the 
patient. The ECG on 
the left had a low 
value for factor 8, 
corresponding to a 
short PR and P-wave 
duration: this patient 
had a low predicted 
risk of LTVA and 
did not reach the 
endpoint. The ECG 
on the right had a 
high value for factor 
8, corresponding to 
a broad P wave with 
a long PR interval: 
this patient had a 
high predicted risk of 
LTVA and reached the 
outcome.

The partial effects on outcome per significant factor have been plotted 

in Supplementary Figure 2. As an example, the ECGs and their corre-

sponding values of the generative factors of two patients were plotted 

in Figure 3. A summary figure of this study was depicted in Figure 4. To 

address the effect that cardiac memory after pacing, a subgroup analysis 

was run excluding patients with a pacemaker (n=32) which showed similar 

factors to be important (Supplementary Table 3).

LA dimensions
To investigate the possibility that the identified factors were an effect of 

anatomical substrates of P-wave abnormalities, such as atrial remodelling, 

first and last LAVI and LA dimensions (by outcome) of complete UMCU 

cases (n = 219) were plotted (supplementary figures 4, 5, 6 and 7 respecti-

vely). LA’s were significantly larger in the last echocardiography, compa-

red to the first (p = 0.02, supplement figure 6). Next, the LA dimensions 

were plotted to these factors (supplement figure 8) which showed no as-

sociation between F8, F15, F25, F27 and F32 and LA dimensions.
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Discussion

This is the first study to use an explainable DNNs trained with (baseli-

ne) ECGs for LTVA prediction in DCM patients on a multicentre dataset. 

By using an inherently explainable DNN architecture, we were able to 

distinguish patients at risk for LTVA whilst allowing interpretation and vi-

sualisation of pivotal ECG features.7 The model was able to identify pa-

tients at highest risk with a predominant network focus on P-wave ab-

normalities. Furthermore, these identified P-wave abnormalities did not 

correlate to their anatomical analogues (LA dimension/LAVI), suggesting 

an electrophysiological substrate.

FactorECG findings in relation to prior studies
The FactorECG encompasses the median beat ECG, including most of its 

features, into 21 generative factors of variation (see https://dcm.ecgx.ai/). 

This novel strategy allows to simultaneously evaluate most characteristics 

that make up an ECG automatically in much smaller datasets, rather than 

using selected and human derived ECG features. Overall, the factors that 

were most predictive for LTVA primarily encoded for several P-wave cha-

racteristics, such as PR-duration, P-wave morphology, and P-wave axis 

(Figure 2). The combination of reconstructed ECGs together with the ha-

zard ratios allow for a novel in-depth interpretation of a DNN’s features. A 

high value in F8 for instance, leads to PR-prolongation with a broadened 

P-wave, whereas a low value in F27 leads to removal of the P-wave, which 

is associated with atrial fibrillation, a known clinical risk factor for LTVA 

in DCM.3 Because the baseline model using established ECG variables 

performed poorly, this indicated that the VAE generative factors are more 

complex than solely the standard ECG intervals. The combination of the 

21 generative factors as well as their interpretation allow for LTVA predi-

ction and feature detection (Figure 3).

The fact that atrial (i.e. P-wave) abnormalities predict ventricular events 

(i.e. LTVA) may be considered remarkable. However, this association 

has been described before, and has been thought to be due to shared 

mechanistic pathologies between atria and ventricles, such as ion-chan-

nel abnormalities, or atrioventricular fibrosis due to atrial remodelling.1,3,13 

In a recently published population study of 13580 participants, abnor-

mal P-wave indices were independently associated with LTVA, after ad-

justment for age, sex, race and study centre.14 As it is likely that these 

P-wave indices are caused by atrial remodelling, we investigated the 

association of anatomical LA characteristics and our identified ECG fac-

tors. As expected, LA dimensions increased significantly over time, indi-

cating disease progression. However, we did not find any association to 

the significant ECG factors, suggesting an exclusive electrophysiologi-

cal substrate. This is in line with other reports, in which individual ECG 

P-wave changes were not reliable predictors of anatomic atrial enlarge-

ment.15,16 

Myocardial fibrosis is often seen in patients with DCM and may 

cause zones of slow conduction in the myocardium, resulting in zigzag 

pathways that are prone to causing ventricular tachycardias.17 These 

cellular mechanisms may be visible on the ECG as increased QRS dura-

tion and bundle branch block or low voltages. In this study, F25 reflects 

increased QRS duration in case of right bundle branch blocks and was 

associated with LTVA as well. Left bundle branch block (F26) however, 

was not associated with LTVA. As these patients generally are CRT re-

cipients which were excluded from our analyses, this may have caused 

an underestimation of the effect of left bundle branch blocks in our mod-

el. Lower voltages seem to be reflected in the FactorECG in F32, which is 

also associated with LTVA. More complex electrocardiographic markers, 

such as QRS fractionation, T-wave alternans and QRS-T angle, have also 

been proposed.1 QRS fractionation and T-wave abnormalities, however, 

did not appear as an explanatory ECG variable in our model. T-wave 

alternans (defined as changing T-wave morphology, occurring in each 

alternant beat) has been repeatedly associated with LTVA in DCM, but 

cannot be measured in the single ECG median beat that is used in the 

current research. All these ECG markers are limited by standardization 

difficulties, which may be decreased by (automatic) interpretation using 
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DNNs.1,4,18,19 

12-lead baseline ECG:
Adult patients with non-ischemic non-valvular dilated cardiomyopathy (<45%)
Follow-up available
ECG before LVAD and HTx
ECG not paced
Excluding CRT implantation

Composite outcome:
- LTVA defined as: Sustained VT (>100 bpm, >30 seconds or
 haemodynamic compromise), VF, SCD or appropriate ICD 
therapy
- LTVA prior to HTx

Dilated Cardiomyopathy
Study Population

Compression of ECG signal into 21 
generative factors

U
M

C
U

M
U

M
C

+

DCM ECGs
(n = 378, 25 with outcome (6%))

DCM ECGs
(n = 317, 90 with outcome (28%)) VAE training with 1,114,332  12-lead 10 

second ECGs of 251,473 unique 
patients  (UMCU)

MUMC+

UMCU

21 generative factors

Training phase

Methods

Results

Not associated with LTVA
Ventricular rate (p = 0.61)0.61) QRS-duration (p = 0.10)= 0.10)0 QTc-time (p = 0.24) ICD guideline indication (p = 0.84)

Factor 8
HR 1.60 [1.29-1.99]

p < 0.005

Factor 15
HR 0.81 [0.66-0.99]

p = 0.04

Factor 25
HR 0.77 [0.62-0.95]

p = 0.02

Factor 27
HR 0.71 [0.57-0.88]

p < 0.005

Factor 32
HR 1.26 [1.03-1.55]

p = 0.03

I II V1 II V1

As these networks are generally “black-box” algorithms that need 

very large datasets for training, a strategy of reducing the ECG into its 

generative factors was used. These interpretable factors were then 

used in a common statistical model (Cox regression), that allowed for 

pivotal ECG features to be visualized. 

Future studies are warranted to prospectively validate the identi-

fied ECG abnormalities and their electrophysiological substrate for LTVA 

prediction in DCM, including a comparison with accepted risk factors 

for LTVA. Since longer PR-interval and wide QRS duration were asso-

ciated with LTVA, assessment of the value of hemiblocks may also be 

considered. Importantly, the addition of prolonged measurements (such 

as exercise tests or Holter for T-wave alternans) in DNNs remains to be 

investigated.

Genotype-phenotype associations
DCM has a genetic basis in 30-50% of cases and specific genotype-phe-

notype associations are known to lead to arrhythmogenic phenotypes. 

One study analysed over 75.000 ECGs from the UK Biobank and establi-

shed several genetic ECG signatures. A polygenic effect on PR-interval 

for instance, was identified, as well as genetic variants related to the 

Q-wave in DCM. The strongest Q-wave locus was discovered in BAG3: 

a gene in which pathogenic variants have been described for DCM with 

high penetrance and a high risk of progressive heart failure.20 As our 

VAE model assessed the entire ECG, an interesting significant factor 

included QRS-T voltages (F32), with high values in this factor associa-

ted with microvoltages. These microvoltages are an established ECG 

characteristic for phospholamban cardiomyopathy, which can lead to 

both a highly arrhythmogenic DCM phenotype and arrhythmogenic car-

diomyopathy.2 Integrating genome and phenome provides unique op-

portunities to study ECG biology in relation to genetic risk which can be 

explored by future studies using DNNs.20–22 Furthermore, these studies 

may pave the way for using artificial intelligence models for risk predi-

ction in DCM patients to estimate an individual’s lifetime (genetic) risk of 

developing a specific arrhythmogenic DCM phenotype.

Figure 4.
Study summary figure, 
including the methods 
and results.
The study population 
were patients 
with dilated 
cardiomyopathy, in 
which an explainable 
pre-trained deep neural 
network (FactorECG) 
was trained for the 
outcome of life-
threatening ventricular 
arrhythmias. This 
network encoded 
the median beat ECG 
into 21 factors to 
generate an ECG using 
only these factors, 
allowing to evaluate 
most characteristics 
that make up an ECG 
automatically, in a 
relatively small dataset. 
LVAD = Left Ventricular 
Assist Device. HTx = 
Heart Transplantation, 
CRT = Cardiac 
Resynchronisation 
Therapy. ECG = 
electrocardiogram. 
VT = Ventricular 
Tachycardia. VF = 
Ventricular Fibrillation. 
SCD = Sudden 
Cardiac Death. 
ICD = Implantable 
Cardioverter-
Defibrillator. HR = 
Hazard Ratio. UMCU 
= University Medical 
Centre Utrecht. 
MUMC+ = Maastricht 
University Medical 
Centre.
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Limitations
This study has several limitations to address. Given the nature of retro-

spective cohorts, data may contain missingness not at random and bias 

may be present requiring prospective evaluation of the findings. As the 

UMCU is a heart transplantation centre, this may have caused a selection 

bias. To account for this, an external cohort was added from the MUMC+ 

(non-heart transplantation centre) of which the patients logically presen-

ted with less severe phenotypes (Table 1). Unfortunately, the characteri-

stics of the implanted ICDs in this population were not available, which 

may have biased our findings. More importantly, since ICD shocks are 

not a true surrogate for sudden cardiac death in patients with DCM, the 

results need confirmation in a study population with fewer ICD carriers or 

considering only fast events (i.e., >250/min).23 Because DCM is relatively 

rare, the results may be due to sample size and require confirmation in 

larger (prospective) studies. 

Conclusion

To the best of our knowledge, this study is the first to use interpretable 

DNNs trained with ECGs for LTVA prediction in DCM patients. We obser-

ved that the VAE network combined with an interpretable Cox regression 

can distinguish patients at risk of LTVA. The use of this inherently explai-

nable DNN pipeline allowed interpretation and visualisation of pivotal 

ECG features.7 While the VAE network encompasses the complete ECG, 

predictions were mainly driven by P-wave abnormalities that did not cor-

relate with LA dimensions, suggesting an electrophysiological substrate. 

Future studies are warranted to validate these findings and elucidate their 

electrophysiological substrate for LTVA prediction in DCM.
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Abstract

Aims
This study aims to identify and visualize ECG features using an explainable deep learning-

based algorithm to predict cardiac resynchronization therapy (CRT) outcome. Its performance is 

compared to current guideline ECG criteria and QRSAREA. 

Methods and results
A deep learning algorithm, trained on 1.1 million ECGs from 251,473 patients, was used to 

compress the median beat ECG, thereby summarizing most ECG features in only 21 explainable 

factors (FactorECG). Pre-implantation ECGs of 1306 CRT patients from three academic centers 

were converted into their respective FactorECG. FactorECG predicted the combined clinical 

endpoint of death, left ventricular assist device, or heart transplantation (c-statistic 0.69 [95% CI 

0.66 – 0.72]), significantly outperforming QRSAREA and guideline ECG criteria (c-statistic 0.61 

[95% CI 0.58 – 0.64] and 0.57 [95% CI 0.54 – 0.60], p < 0.001 for both). Addition of 13 clinical 

variables was of limited added value for the FactorECG model when compared to QRSAREA 

(∆ c-statistic 0.03 versus 0.10). FactorECG identified inferolateral T-wave inversion, smaller right 

precordial S-wave and T-wave amplitude, ventricular rate, and increased PR-interval and P-wave 

duration to be important predictors for poor outcome. An online visualisation tool was created to 

provide interactive visualizations (https://crt.ecgx.ai).

Conclusion 
Requiring only a standard 12-lead ECG, FactorECG held superior discriminative ability for the 

prediction of clinical outcome as compared to guideline criteria and QRSAREA, without requiring 

additional clinical variables. End-to-end automated visualisation of ECG features allows for an 

explainable algorithm, which may facilitate rapid uptake of this personalised decision-making 

tool in CRT.

Graphical abstract

Explainable DNN
(FactorECG)

Pretrained on 
1.1 million ECGs

FactorECG
predicted risk
quartiles

High risk
Medium-high risk
Medium-low risk
Low risk
Class I indication
Non-class I indication

1306 patients that
received CRT

Preprocedural raw 12-lead 
median ECG beat as input

Prediction of
outcomes

LVAD/HTx/mortality
Echocardiographic response

Prognostic
performance

DNN outperforms guideline 
critera and QRSAREA

V1 V1V1 V1

Risk of HTx/LVAD/mortality lowhigh

Example of explanation by DNN

First, an artificial intelligence algorithm (variational auto-encoder) was pretrained on 1.1 million ECGs to learn the underlying continuous 
factors that generate the ECG (i.e., the FactorECG). In this process, the VAE learns to reconstruct ECGs as accurate as possible 
using only 21 continuous factors without any human input. In the training phase, preprocedural median beat ECGs of 1306 CRT 
patients were each converted into their FactorECG. These 21 factors were subsequently used as input in a Cox model to predict 
the primary composite endpoint of LVAD implantation, heart transplantation and all-cause death, and the secondary endpoint of 
echocardiographic response. FactorECG significantly improved outcome prediction following CRT as compared to the current 
guidelines and QRSAREA. The algorithm is explainable by using the decoder to visualize the effect of the ECG factors that significantly 
predicted outcome on the median beat ECG morphology. Here, for example, the influence of factor 9 (F9) is visualized, where higher 
values represent a more left bundle branch block-like ECG morphology and lower values a more right bundle branch block-like 
morphology. Legend: CRT; cardiac resynchronization therapy, DNN; deep neural network, ECG; electrocardiogram, HTx; heart 
transplantation, LVAD; left ventricular assist device.
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Introduction

In patients with dyssynchronous heart failure (HF), cardiac resynchroniza-

tion therapy (CRT) can effectively restore left ventricular (LV) electrical acti-

vation and mechanical function, thereby improving clinical outcome.1 Howe-

ver, for CRT to be beneficial, sufficient LV electrical conduction delay must 

be present.2 Currently, patients are selected based on various requiremen-

ts set out by different guidelines. However, despite indicating the highest 

level of recommendation, by itself, a class I indication does not necessarily 

ensure a sustained response after CRT.3 Conversely, effectiveness of CRT 

is variable and doubted in patients without left bundle branch block (LBBB) 

morphology or intermediate QRS-duration.2,4,5 Although a substantial por-

tion of these patients will benefit regardless, they are at increased risk of 

not being considered for treatment.5,6 Accurate and objective identification 

of the underlying electrical substrate is therefore crucial to optimize patient 

selection and ensure optimal treatment.

Currently, electrical characteristics derived from the electrocardio-

gram (ECG), such as LBBB-morphology and QRS-duration, are used to 

determine eligibility for CRT.2 Multiple ECG criteria for LBBB have been 

defined7, and inter-observer variability is high.8 Moreover, a variety of 

LV electrical activation patterns are concealed in the ECG, further com-

plicating clinical decision making.9 Recently, QRSAREA has emerged as a 

new and objective computerized measure.3,10 QRSAREA is independently 

associated with survival and echocardiographic response, outperforming 

LBBB-morphology and QRS-duration.3,10 As such, QRSAREA partly over-

comes the challenges of subjective ECG interpretation, but (subtle) ECG 

characteristics, also besides the QRS-complex, are still not considered. 

Machine learning has gained interest as a means of integrating large 

amounts of variables, thereby producing advanced clinical decision 

models. The SEMMELWEIS-CRT score, for example, outperforms many 

already existing risk scores, but relies on 33 clinical variables.11 Besides 

being laborious to use, such models also rely on human interpretation of 

input variables such as left ventricular ejection fraction (LVEF), New York 

Heart Association (NYHA), LBBB-morphology and QRS-duration, which 

are all subjectively assessed. Hence, although such models may predict 

response to CRT, large amounts of clinical variables will still need to be 

acquired, extracted and entered in such models.11–14

A recent development in the field of machine learning, called deep 

learning, can learn features from the raw ECG signal without the necessity 

for any human interpretation.15 Deep learning algorithms may therefore be 

used to automatically detect, identify and classify ECG abnormalities that 

are associated with non-response or poor outcome after CRT. Although 

the need for very large datasets and the lack of interpretability were 

deemed common drawbacks of deep learning, a novel technique that 

uses a variational auto-encoder (the FactorECG) was recently introduced, 
16 This approach enables physicians to better understand and verify the 

learned ECG features of deep learning algorithms, and make the tech-

nique available to much smaller datasets.

The present study seeks to compare contemporary guideline ECG 

criteria for CRT implantation and QRSAREA with the FactorECG for the pre-

diction of a combined clinical endpoint and echocardiographic response. 

In addition, we aim to identify and visualise ECG features associated with 

these outcome measures.
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Methods

Study design 
All data were acquired for routine patient care and handled anonymously, 

and were collected as part of the multicentre Maastricht-Utrecht-Groningen 

(MUG) registry10. Under these circumstances, informed consent was waived 

by the Institutional Review Board at the time of the study. All study procedu-

res were performed in compliance with the Declaration of Helsinki. 

Only patients who received a de novo CRT-device with a transvenous 

LV-lead were considered for the present study (Figure 1). A baseline ECG 

(within 3 months before implantation) was required for the primary endpoint 

analysis, whereas paired echocardiographic examination at baseline and 

follow-up (6 to 12 months) was required for the secondary endpoint. Echo-

cardiographic exams from various vendors were used to determine LV 

end-systolic volume (LVESV), and LVEF was calculated using the Simpson’s 

modified biplane method (IntelliSpace Cardiovascular, Philips, Eindhoven).

The primary endpoint was a combined clinical endpoint consisting of 

left ventricular assist device (LVAD) implantation, heart transplantation (HTx), 

and all-cause mortality. The secondary endpoint was echocardiographic 

non-response, defined as relative decrease in LVESV of less than 15%.17 In 

addition, three tertiary endpoints were investigated: 1) a composite of HF 

hospitalization and the primary endpoint, 2) HF hospitalization alone, and 3) 

≥ 1 point NYHA functional class improvement.

Electrocardiographic data
For all patients, standard 12-lead ECGs were exported and converted into 

median heart beats using the MUSE ECG system (MUSE version 8, GE 

Healthcare, Chicago, IL). The median beat data were constructed by ali-

gning all QRS-complexes in the 10 second ECG of the same shape (e.g., 

excluding premature ventricular complexes), and generating a representa-

tive QRS-complex by taking the median voltage.18 Automated ECG readin-

gs were used to derive QRS-duration and other typical ECG parameters. 

LBBB-morphology was defined according to the 2013 ESC and 2013 AHA 

criteria at the time (Supplemental Table 1), as previously reported.7 Using 

these morphological definitions, indications for CRT implantation were de-

termined according to the current ESC 2021 guidelines.2 Strauss criteria 

provide similar risk-stratification as compared to the ESC 2013 criteria7, 

and were therefore not evaluated. Without exception, all digitally available 

ECGs were selected for analysis.

To calculate QRSAREA, first all ECGs were semi-automatically recoded 

into vectorcardiograms, consisting of three orthogonal leads (X, Y, and Z). 

To this end, the Kors conversion matrix was used in custom Matlab software 

(MathWorks Inc).19 The three orthogonal leads from the vectorcardiogram 

form a 3D-vector loop, from which QRSAREA was calculated as the sum of the 

area under the QRS-complex as .

Deep learning approach
A recently developed approach to use deep neural networks in an explai-

nable method, referred to as the FactorECG, was used. Here, the complete 

median beat ECG is analysed using a variational auto-encoder (VAE), which 

MUG Database 
n = 1946

RV pacing 
n = 340

Eligible patients 
n = 1492

QRS < 120 ms 
n = 114

No digitized ECG
n = 185

Included patients 
n = 1307

Echocardiographic
response endpoint  

n = 821

Primary composite
endpoint 
n = 1306

HF hospitalization 
endpoint
n = 1137

NYHA improvement 
endpoint 
n = 1017

Missing echo 
n = 486

No clinical FU
n = 1

No HFH FU 
n = 170

Missing NYHA 
n = 290

Figure 1.
Flowchart for the 

inclusion of patients 
in this study.

Legend: ECG, 
electrocardiogram; FU, 

follow up; HF, heart 
failure; HFH, heart 

failure hospitalization; 
NYHA, New York Heart 

Association; RV, right 
ventricular.
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divided the ECG into morphological features without any assumptions (e.g., 

an agnostic approach). For this approach, the VAE was pretrained to learn 

these morphological features (or underlying generative factors) of the ECG, 

using a dataset of 1,144,331 ECGs from 251,473 consecutive patients that un-

derwent ECG recording in the University Medical Centre Utrecht between 

July 1991 and August 2020.16 Overlap in the pretraining cohort and patients 

included in this study was negligible at 0.04%, and could not influence the 

results since the VAE was trained unsupervised (i.e., without any knowled-

ge of CRT outcome).

The VAE is a generative artificial intelligence algorithm that consists of 

three parts: 1) an encoder neural network, 2) the FactorECG (a compressed 

version of the ECG in only 32 disentangled continuous factors) and 3) the 

decoder neural network (Figure 2A). The goal of the VAE is to learn to 

‘compress’ the ECG, without human interference, into a reduced number of 

continuous and independent variables that are presumably related to the 

underlying (patho)physiological generative processes of the ECG. Pretrain-

ing of the VAE was performed unsupervised by entering the median beat 

ECGs into the algorithm and reconstructing the same ECG, while calculat-

ing the difference between the original and reconstructed ECG to optimize 

the network. After training, the first part of the VAE (encoder) can be used 

to convert any median beat ECG into its FactorECG, the distinctive set of 

32 factors that represent that ECG. Importantly, it has been shown before 

that only 21 of the 32 factors encode significant information.16 Hence, only 

these 21 factors were used in subsequent models. In the training step of 

the current analysis, the 21 continuous FactorECG values for every ECG, as 

calculated by the encoder, are used in Cox and logistic regression models 

to perform prediction of the different endpoints (Figure 2B). 

Explainability of the individual ECG factors was achieved by visualizing 

their influence on the median beat ECG morphology. This was done on the 

model-level by varying the values of the individual ECG factors between -3 

and 3, while reconstructing the ECG using the decoder. The other factors 

were kept constant, which allows for visualization of the distinct median 

beat ECG morphology that every factor entails. Moreover, patient-level 

explanations can be obtained by investigating the FactorECG values of 

that specific ECG, in combination with the coefficients of the model. This 

way, we can determine which factors were important in a specific patient 

to make the prediction. Interactive visualizations of the model are available 

on https://crt.ecgx.ai. The architecture and training procedures for the Fac-

torECG have been described in detail before.16

Statistical analysis
Baseline characteristics were expressed as mean ± standard deviation 

(SD), or median with interquartile range (IQR), where applicable. Depen-

ding on normality of data, differences in continuous variables were asses-

sed using the Student t test or Mann-Whitney U test. Conversely, catego-

rical variables were tested using the χ2 test or Fisher exact. 

Models using different guideline criteria, QRSAREA and the per-patient 

21 significant standardized FactorECG values, were compared. For the 

primary endpoint, multivariable Cox proportional hazard models were 

fitted to take time-to-event into account. For the secondary endpoint, a 

similar approach was applied, with multivariable logistic regression to pre-

dict the binary endpoint of LVESV non-response < 15%. In a second step, 

the added value of the models to a combination of 13 standard clinical 

median beat
ECG

reconstructed
ECG

DNN
encoder

DNN
decoder

FactorECG
21 continuous generative ECG factors

LVAD/HTx/death Non-response
LVESV reduction <15%

Cox regression Logistic regression

A Pretraining: unsupervised on 1.1 million ECGs

B  Training: FactorECG as input to prediction models

Figure 2.
Schematic 
representation of the 
series of algorithms 
and processes: 
a variational 
auto-encoder, the 
FactorECG and 
reconstructions.
A: in the pretraining 
phase, the variational 
auto-encoder is 
trained on a dataset 
of 1.1 million median 
beat ECGs from the 
University Medical 
Center Utrecht to 
learn the underlying 
factors that generate 
the ECG. In this 
process, the VAE 
learns to reconstruct 
ECGs as accurate 
as possible using 
only the FactorECG 
continuous factors. B: 
in the training phase, 
the 21 significant 
ECG factors for every 
median beat ECG in 
the CRT population 
are obtained using 
the encoder. These 
factors are used as 
input in Cox and 
logistic regressions 
models to predict 
outcome (composite 
of LVAD implantation, 
heart transplantation 
and death) or 
non-response 
(LVESV reduction 
less than 15% after 
CRT implantation). 
Legend: DNN; deep 
neural network, ECG; 
electrocardiogram, 
HTx; heart 
transplantation, 
LVAD; left ventricular 
assist device, LVESV; 
left ventricular 
end-systolic volume, 
VAE; variational auto-
encoder.
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parameters was assessed. Clinical parameters known to be associated 

with CRT outcome were entered in the multivariable models (i.e. Cox re-

gression for the primary endpoint and logistic regression for secondary 

endpoint): sex, age, etiology (i.e. ischemic cardiomyopathy [ICM] or non-

ICM), weight, height, baseline NYHA class, rhythm (sinus rhythm or atrial 

fibrillation), baseline LVEF, baseline end-diastolic volume, baseline inter-

ventricular mechanical delay (IVMD), hemoglobin, creatinine levels, and 

presence of diabetes. As there were missing values of some parameters, 

multivariate imputation using chained equations was performed using 

only these clinical parameters as input. 

For all models, non-linear relationships were investigated using nat-

ural cubic splines, and for the Cox models the proportional hazards as-

sumption was verified. Hazard ratios (HR) and odds ratios (OR) were re-

ported to investigate the importance of individual predictors, such as the 

standardized FactorECG values. Model fit for all models was assessed us-

ing Akaike’s Information Criterion (AIC), discrimination using Harell’s C-sta-

tistic, and calibration using the calibration slope. The apparent C-statistic 

and calibration slope were obtained by applying the model on the orig-

inal data. Internal validation was performed by using a bootstrap-based 

optimism estimation technique, where all model development steps are 

repeated on the 500 bootstrap samples and the model is tested on the 

original data.20 The “optimism”, which is the mean difference between 

the performance measure in the original and bootstrapped dataset, 

was subtracted from the apparent performance measures. These opti-

mism-corrected measures have shown to be an unbiased estimate of the 

generalizability of the model, without losing any data for training.21 Con-

fidence intervals (CI) around the performance measures were obtained 

using 2000 bootstrap samples. All statistical analyses were performed 

using Python version 3.8. The Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis Statement for the 

reporting of diagnostic models was followed, where applicable.22

Results

Baseline characteristics
A real-world CRT population was gathered from three Dutch academic 

hospitals (n = 1946), of which 1492 were eligible after exclusion for RV-pa-

cing and QRS-duration < 120ms. Of the 1492 patients, 1307 had a digital 

ECG available in the 90 days before implantation and 1306 were included 

in the analysis for the primary endpoint (Figure 1, Table 1). Median time 

between ECG and implantation was 1 day [IQR 1-6 days]. The pretrained 

VAE performed well in the current population, with a Pearson correlation 

between the original and reconstructed ECG of 0.86. ESC guideline CRT 

indication, using the ESC 2013 criteria for LBBB, were as follows: class I 

737 (56%), class IIa 401 (31%), class IIb and class III 168 (13%) (Table 1). When 

applying the AHA criteria for LBBB, indications were as follows: class I 134 

(10%), class IIa 786 (60%), class IIb and class III 385 (30%).

Primary endpoint: combined clinical outcome
A total of 385 patients (30%) reached the primary endpoint of LVAD implanta-

tion (n = 11), HTx (n = 4), or all-cause mortality (n = 370). The median follow-up 

time was 3.5 years [IQR 2.1 – 5.2 years]. Optimism corrected C-statistics were 

derived for the different predictor sets in predicting the occurrence of the 

primary endpoint (Table 2, Supplemental Tables 2 and 4-8). According to 

current guideline criteria for CRT implantation, a class I indication was signifi-

cantly associated with freedom of the primary endpoint, when compared to 

a non-class I indication. However, this association was only seen when using 

the ESC (c-statistic 0.57 [95% CI 0.54 – 0.60]), but not with the AHA definition 

(c-statistic 0.50 [95% CI 0.47 – 0.53]) of LBBB morphology (Table 2). A stron-

ger association with outcome was seen using the FactorECG (c-statistic 0.69 

[95% CI 0.66 – 0.72], p < 0.001 for both AHA and ESC definitions). Moreover, 

FactorECG had a significantly stronger association with outcome than QRSA-

REA (c-statistic 0.61 [95% CI 0.58 – 0.64], p < 0.001). 



270 | Chapter 10 ECG-based deep learning and CRT | 271

VARIABLE MISSING
– N (%)

OVERALL
(N = 1306)

Age (years) 68.3 [60.0-74.7]0 (0)

DM – n (%) 328 (25.2)2 (0.1)

Length (cm) – mean (SD) 174 (8.9)66 (5.1)

NT-proBNP (pmol/L) – median [IQR] 1379 [587-2845]605 (46.3)

Male sex – n (%) 919 (70.4)0 (0)

Preprocedural NYHA – n (%) 29 (2.2)

I 513 (40.2)

II 672 (52.6)

III 64 (5.0)

IV 1226 (93.9)

ICD – n (%) 0 (0)

Weight (kg) – mean (SD) 81.9 (16.1)60 (4.6)

ICM – n (%) 649 (49.7)0 (0)

Hemoglobin (mmol/L) – median [IQR] 8.5 [7.8-9.1]436 (33.3)

Creatinine (mmol/L) – median [IQR] 102 [83-130]48 (3.7)
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VARIABLE MISSING
– N (%)

OVERALL
(N = 1306)

Sinus rhythm – n (%) 1096 (84.5)9 (0.7)

LBBB (AHA) – n (%) 173 (13.3)0 (0)

QRS duration (ms) – median [IQR] 158.0 [146.0-172.0]0 (0)

LV lead position – n (%) 38 (2.9)

PR duration (ms) – median [IQR] 184.0 [164.0-213.5]216 (16.5)

QRSAREA (μVs) – median [IQR] 108.2 [76.0-151.0]0 (0)

LVEDV (ml) – median [IQR] 205.0 [157.1-271.0]355 (27.2)

LVESV (ml) – median [IQR] 151.0 [113.0-209.0]349 (26.7)

LVEF (%) – median [IQR] 24.0 [18.9-30.0]321 (24.5)

IVMD (ms) - median [IQR] 45.0 [22.0-64.0]522 (40.0)

CRT-P – n (%) 80 (6.1)0 (0)

QTc duration (ms) – median [IQR] 486.0 [463.0-510.0]0 (0)

LBBB (ESC 2013) – n (%) 1028 (78.7)0 (0)

Anterior 135 (10.6)

Lateral 466 (36.8)

Posterior 667 (52.6)

Duration of follow-up (years) – 
median [IQR]

3.48 [2.08-5.24]0 (0)

Primary endpoint
(LVAD, HTx or death) – n (%)

385 (30)0 (0)
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VARIABLE MISSING
– N (%)

OVERALL
(N = 1306)

LVESV reduction (%) - median [IQR] 20.9 [0.5-41.4]485 (37.1)

I 178 (16.8)

Composite of primary endpoint and heart 
failure hospitalization – n (%)

406 (35.7)169 (12.9)

LVESV non-responder endpoint
– n (%)

355 (43)485 (37.1)

II 650 (61.5)

III 216 (20.4)

IV 13 (1.2)

NYHA improvement endpoint 509 (50)289 (22.1)

Heart failure hospitalization
endpoint – n (%)

133 (11.7)169 (12.9)

Postprocedural NYHA – n (%) 249 (19.1)

O
U

TC
O

M
ES

Table 1.
Baseline characteristics.
CRT-P, cardiac resynchronization therapy 
pacemaker; DM, diabetes mellitus; ICD, 
implantable cardioverter defibrillator; ICM, 
ischemic cardiomyopathy; IVMD, Interventricular 
mechanical delay; IQR, interquartile range; LBBB, 
left bundle branch block; LV, left ventricular; LVEDV, 
left ventricular end diastolic volume; LVEF, left 
ventricular ejection fraction; LVESV, left ventricular 
end systolic volume; NT-proBNP, N-terminal pro-
B-type natriuretic peptide; NYHA, New York Heart 
Association; SD, standard deviation.
 

When subdividing QRSAREA and FactorECG in four quartiles, better 

discriminative performance for the occurrence of the primary endpoint 

was achieved using FactorECG (Figure 3). A significantly higher event 

free survival at three years was seen in the lowest risk FactorECG group 

as compared to QRSAREA ≥ 150 μVs (94% versus 89%; log rank p = 0.01). 

Additionally, three-year event free survival for the highest risk FactorECG 

quartile was significantly worse than in patients with QRSAREA < 75 μVs 

(63% versus 73%; log rank p < 0.005).

Secondary endpoint: echocardiographic non-response
Pre- and postprocedural echocardiograms were available in 821 patients. 

Long-term echocardiographic non-response was observed in 355 patien-

ts (43%). All evaluated models were significantly associated with echo-

cardiographic non-response (Table 2, Supplemental Tables 3 and 9-13). 

However, guideline classifications performed the worst, using either the 

ESC (c-statistic 0.61 [95% CI 0.57 – 0.64]) or AHA definition (c-statistic 

OutcomePredictors

C-statistic 95% CI C-statistic 95% CI

AHA 2013 criteria 0.50 [0.47-0.53] 0.56 [0.53–0.60]

ESC 2013 criteria 0.57 [0.54-0.60] 0.61 [0.57–0.64]

QRSAREA 0.61 [0.58-0.64] 0.70 [0.67–0.74]

Clinical 0.69 [0.67-0.72] 0.67 [0.64–0.71]

FactorECG 0.69 [0.66-0.72] 0.69 [0.65–0.72]

QRSAREA / Clinical 0.71 [0.68-0.74] 0.72 [0.68-0.75]

FactorECG / Clinical 0.72 [0.69-0.75] 0.70 [0.67–0.74]

Response

Table 2.
Optimism corrected 
C-statistic for 
outcome and 
response.
AHA, American Heart 
Association; ESC, 
European Society 
of Cardiology; 
ICM, ischemic 
cardiomyopathy; 
LBBB, left bundle 
branch block. 
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<76 μVs
76-108 μVs
109-150 μVs
>150 μVs
Class I indication
Non-class I indication

Non-class I indication

Class I indication

<75 μVs

76-108 μVs

109-150 μVs

>150 μVs

58-100%

44-57%

29-43%

0-28%

27-100%
18-26%
12-17%
0-11%
Class I indication
Non-class I indication

0  1  2  3  4  5  6  7  8 0  1  2  3  4  5  6  7  8

Predicted probability of non-response 
using FactorECG (quartiles)

QRSarea (quartiles)

QRS area (quartiles) Predicted probability of three-year risk
of LVAD/HTx/death using FactorECG (quartiles)

Class I indication

Class IIa indication

Class IIb/III indication

Predicted response and good outcome
P(non-response): <44%
P(poor outcome): <18%

A

B

C

Reclassification flow from current guideline indications to a combination of 
predicted outcome and response using the FactorECG 

Predicted response, but poor outcome
P(non-response): <44%
P(poor outcome): >18%

Predicted non-response, but good outcome
P(non-response): >44%
P(poor outcome): <18%

Predicted non-response and poor outcome
P(non-response): >44%
P(poor outcome): >18%

0.56 [95% CI 0.53 – 0.60]) of LBBB-morphology. FactorECG (c-statistic 

0.69 [95% CI 0.65 – 0.72]) and QRSAREA (c-statistic 0.70 [95% CI 0.67 – 

0.74]) had similar associations with non-response (p = 0.12) but were 

both significantly stronger associated with response than either guide-

line recommendation (p < 0.001, Figure 3). Differences in the extent of 

reverse remodelling, stratified according to four groups of FactorECG 

and QRSAREA, was similar (Figure 3).

Tertiary endpoints
Availability of tertiary endpoints are summarised in Figure 1 and Table 

1. FactorECG was significantly associated with the composite of the 

primary endpoint combined with HF hospitalization (c-statistic = 0.67 

[95% CI 0.65 – 0.70], and HF hospitalization alone (c-statistic = 0.70 

[95% CI 0.66 – 0.74]), outperforming QRSAREA and the guideline criteria 

(p < 0.001 for all comparisons (Supplemental Tables 14-24). None of 

the models showed additional predictive value for prediction ≥ 1 point 

NYHA improvement as compared to a baseline model that only consi-

sted of preprocedural NYHA class (Supplemental Tables 14, 25-29). 

Subgroup analysis
Performance of FactorECG and QRSAREA were compared, stratified 

by known subgroups associated with clinical outcome (Table 3). The 

strongest association of FactorECG was observed in patients with 

non-ICM (c-statistic 0.77 [95%CI 0.73 – 0.81]), which was significantly 

higher as compared to QRSAREA (c-statistic 0.62 [95%CI 0.57 – 0.67]). 

Using the ESC definition of LBBB-morphology, FactorECG outperfor-

med QRSAREA in patients with LBBB (c-statistic 0.71 [95%CI 0.68 – 0.74] 

versus c-statistic 0.61 [95% CI 0.58 – 0.65]), and non-LBBB (c-statistic 

0.66 [95% CI 0.60 – 0.71] versus c-statistic 0.52 [95% CI 0.46 – 0.58]). 

The same observation was made when evaluating patients with an 

intermediate QRS-duration, below 150 ms, and patients with ICM. Im-

portantly, FactorECG and QRSAREA demonstrated comparable associa-

tions with echocardiographic response, regardless of the subgroup 

analysed (Table 3).

Figure 3.
Clinical utility of 
FactorECG and 
QRSAREA in CRT. 
QRSAREA and 
FactorECG predicted 
probabilities were 
divided into four 
quartiles of equal size.
Quartiles of FactorECG 
better differentiate 
clinical outcome as 
compared to QRSAREA 
and guidelines using 
the ESC criteria of 
LBBB (panel A). Similar 
associations with 
echocardiographic 
response were seen 
when compared 
to QRSAREA, while 
still outperforming 
guideline criteria (panel 
B). Reclassification flow 
form the guidelines 
to the FactorECG 
predictions is shown 
in panel C. Here, 
a combination of 
predicted clinical 
outcome and response 
is assessed by setting 
the probability cut-off 
at 50% of the data. 
Probability cut-offs 
in panel C therefore 
correspond to the 
upper two and lower 
two quartiles in panels 
A and B combined. 
Legend: ECG; 
electrocardiogram, HTx; 
heart transplantation, 
LVAD; left ventricular 
assist device, LVESV; 
left ventricular end-
systolic volume.
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Additional value of clinical model
Readily available patient characteristics, known to be associated with 

CRT outcome, were entered into a clinical model 11. The clinical mod-

el was significantly associated with outcome (c-statistic 0.69 [95% CI 

0.67 –0.72]) and response (c-statistic 0.60 [95%CI 0.56 – 0.64]) (Table 2, 

Supplemental Table 4-13). However, for both endpoints, the ECG-only 

FactorECG model demonstrated similar associations as compared to 

the clinical model (p = 0.48 and p = 0.10, respectively). For outcome, 

the addition of a 13-variable clinical model significantly improved upon 

QRSAREA (Δ c-statistic 0.10, p < 0.001), whereas its addition to FactorECG 

was of limited added value (Δ c-statistic 0.03, p < 0.001). By contrast, 

concerning echocardiographic non-response, the added value of the 

clinical model was negligible (Δ c-statistic 0.01, p = 0.002).

Outcome
(C-statistic [95% CI])

Subgroup

QRSAREA FactorECG QRSAREA FactorECG

Male 0.60 [0.57-0.63] 0.67 [0.64-0.70] 0.69 [0.65-0.73] 0.70 [0.66-0.74]

Female 0.61 [0.53-0.69] 0.77 [0.71-0.83] 0.70 [0.63-0.77] 0.73 [0.66-0.79]

ICM 0.58 [0.54-0.62] 0.63 [0.60-0.67] 0.65 [0.59-0.70] 0.67 [0.61-0.72]

LBBB* 0.61 [0.58-0.65] 0.71 [0.68-0.74] 0.71 [0.67-0.75] 0.73 [0.69-0.76]

Non-ICM 0.62 [0.57-0.67] 0.77 [0.73-0.81] 0.72 [0.67-0.77] 0.74 [0.70-0.79]

Non-LBBB* 0.52 [0.46-0.58] 0.66 [0.60-0.71] 0.53 [0.43-0.63] 0.55 [0.46-0.65]

0.71 [0.67-0.75]QRS ≥150ms 0.62 [0.58-0.66] 0.70 [0.66-0.73] 0.73 [0.69-0.77]

QRS <150ms 0.58 [0.53-0.63] 0.72 [0.67-0.76] 0.62 [0.55-0.70] 0.67 [0.60-0.73]

Response
(C-statistic [95% CI])

Table 3.
Optimism corrected 
C-statistic in 
various subgroups. 
ICM, ischemic 
cardiomyopathy; 
LBBB, left bundle 
branch block. * 
Morphology evaluated 
according to ESC 2013 
criteria

Explainable deep learning through factor visualisation
ECG factors that were significantly associated with outcome and non-re-

sponse are summarised in Figure 4. Exact hazard ratios for outcome 

and odds ratios for non-response are summarised in Supplemental 

Table 5 and 10, respectively. Visualisations of the most important ECG 

factors, using factor traversals, are shown in Figure 5, whereas Supple-

mental Figure 1 displays complete 12-lead visualisation of all factors. 

Factors associated with ‘both’ non-response and poor outcome were in-

terpreted as follows: F1 (absent QRS-notching and ST-deviation, but late-

ral T-wave inversion), F9 (transition from LBBB-morphology to more right 

bundle branch block-morphology with smaller right precordial S-wave 

amplitudes), F10 (increased ventricular rate), and F19 (decreased anterior 

QS-amplitude and lateral notched R). Importantly, F8 and F15 (increa-

sed PR-interval and P-wave duration) were only associated with worse 

outcome, whereas F5 (decreased QRS duration and JTc-interval) and 

F26 (decreased QRS-duration and amplitude of the LBBB-morphology) 

1

5

8

9

10

15

17

19

26

27

31

32

Hazard ratio for LVAD/HTx/death

Odds ratio for non-response

Odds/hazard ratio [95%CI]

Figure 4.
Hazard and odds 

ratios for the models 
predicting either the 

clinical endpoint or 
echocardiographic 

non-response (LVESV 
reduction < 15%) using 

the ECG factors as 
the only input for the 

model.
Colors (red and 

green) correspond 
with factor traversal 

reconstructions 
in Figure 5. All 

ECG factors were 
standardized and 

hazard and odds ratios 
can be interpreted 

as importance 
scores. Legend: ECG; 

electrocardiogram, 
HTx; heart 

transplantation, LVAD; 
left ventricular assist 

device, LVESV: left 
ventricular end-systolic 

volume.
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was only associated with non-response. Similar factors (F1, F9 and F19), 

mostly representing reduced QRS and T-wave voltage with increased 

QT duration, were found to be predictive for HF hospitalization when 

compared to the model for the primary outcome alone (Supplementary 

Table 21). However, F25, which represents reduced QRS duration, was 

also predictive for HF hospitalization.

Clinical applicability using risk groups
Using a combination of predictions of the FactorECG algorithm for both 

echocardiographic non-response and 3-year clinical outcome, four 

distinct groups could be identified to assist patient selection (Supple-

mental Table 30). Here, QRSAREA could not differentiate between good 

outcome goodpoor

response goodpoor

F1

I

F5

V1

outcome no effectno effect

response goodpoor

outcome poorgood

response no effectno effect

F8

II

outcome goodpoor

response goodpoor

outcome poorgood

response poorgood

outcome no effectno effect

response poorgood

F9

V1

F10

V3

F26

V1

and poor outcome in echocardiographic responders (median QRSAREA 

151 versus 152 μVs, respectively) or non-responders (median QRSAREA 84 

versus 83 μVs, respectively).

In the first group, with both predicted response and good outcome 

(n = 338), 76% of the patients were responders, and only 14% experi-

enced the primary endpoint during follow-up. In the second group of 

poor 3-year outcome despite an echocardiographic response (n = 72), 

patients were more frequently male, had ICM, higher NT-proBNP, high 

QRS-duration, and the worst ESV and LVEF. Conversely, in the third 

group, CRT non-responders with good clinical outcome regardless (n = 

96) were predominantly characterised by shorter QRS-duration, lowest 

LVESV, and highest LVEF. In the fourth group of patients, with both poor 

outcome and non-response, significant more ICM, NYHA III, and non-

LBBB was observed as compared to the other subgroups. In this worst 

performing subgroup (n = 314) the primary endpoint occurred in 46% 

of the patients during follow-up, and response occurred in only 36% of 

patients. 

In contrast, when using the current ESC guidelines for selection of 

patients eligible for CRT, in class I patients (n = 499) response occurred 

in 65% and the primary outcome endpoint in 26% during follow-up. In 

patients with class IIa (n = 226) or IIb/III (n = 96) indications, response 

occurred in 50% and 33%, and the primary outcome endpoint in 35% 

and 37%, respectively. A comparison of the classification in the four Fac-

torECG groups and the guideline-based groups can be found in Figure 

2C. 

Figure 5.
Factor traversals of 
a subset of the ECG 
factors associated with 
both, clinical outcome 
(composite endpoint 
of LVAD/HTx/death) 
and echocardiographic 
response (LVESV 
reduction > 15%). 
In each graph the 
corresponding factor 
is varied from -3 (blue) 
to 3 (red) standard 
deviations from the 
mean of 0 (white line), 
which represents a 
mean ECG in the CRT 
population.
For each factor, the 
lead showing the most 
easily interpretable 
effect is shown in 
the upper left corner. 
Complete 12-lead ECG 
of all factors can be 
found in Supplemental 
Figure 1. Legend: ECG; 
electrocardiogram, HTx; 
heart transplantation, 
LVAD; left ventricular 
assist device, LVESV; 
left ventricular end-
systolic volume.
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Discussion

In this large, multicentre, real-world dataset, an explainable deep lear-

ning-based algorithm (the FactorECG) was predictive for long-term clini-

cal outcome, HF hospitalization, and echocardiographic non-response 

after CRT implantation. FactorECG outperformed contemporary guideli-

ne criteria and vectorcardiographic QRSAREA for clinical outcome, and HF 

hospitalization. Importantly, only a readily available 12-lead ECG is requi-

red since little added value was obtained using additional clinical input 

variables. The user-independent analysis and automated visualization 

of key ECG features allows for patient-specific interpretation of the al-

gorithm (Figure 6), which may facilitate its adoption into clinic practice 

as a valuable alternative for the selection of CRT candidates. Lastly, an 

online visualisation tool was created to provide interactive visualizations 

(https://crt.ecgx.ai).

Deep learning-based prediction of outcome
For the first time, deep learning has been used to predict clinical outco-

me after CRT using only the raw preprocedural ECG (c-statistic 0.69 

[95% CI 0.66-0.72]). In contrast, previous studies aimed to predict CRT 

outcome using machine learning to unify a vast number of clinical va-

riables in a single model. The SEMMELWEIS-CRT score combined 33 

clinical variables for the prediction of all-cause mortality, reporting a 

mean internally calculated c-statistic of 0.69, derived from 1510 patients 

in a single centre.11 Similarly, three other studies combined a plethora of 

pre-implantation characteristics, including ECG and complex echocar-

diography data, totalling 19, 45 or even 77 variables.12–14 Another study 

compared an unsupervised principal component analysis model with 

QRSAREA.23 Here, similar results for QRSAREA (HR = 0.46 [95% CI 0.39–

0.55]) and their model (HR = 0.45 [95% CI 0.38–0.53]) were seen for the 

composite endpoints of death, LVAD, or HTx.

Figure 6.
Patient-level example 

of a prediction with 
the FactorECG 

explanation.
A standard 12-lead ECG 

is entered into a deep 
learning model, which 

automatically translates 
this ECG into its 

FactorECG containing 
all distinct features. 

These factors are 
entered into the Cox 

and logistic regression 
models and predicted 
probabilities for both 
LVAD/HTx/death and 

non-response are 
shown to the user. This 

patient responded 
well to CRT, but died 

within three years 
regardless. Despite 

presence of a ‘typical’ 
LBBB morphology 

(F9), FactorECG 
demonstrates that 

this prediction of high 
probability of poor 

outcome is driven by 
increased ventricular 
frequency (F10), long 

PR-interval with broad 
P-wave (F15), and axis 
deviation to the right 

(F31). Legend: ECG; 
electrocardiogram, HTx; 

heart transplantation, 
LVAD; left ventricular 
assist device, LVESV, 

left ventricular end-
systolic volume.

Differences in primary clinical endpoints in the aforementioned stud-

ies complicate a direct comparison with the present study. However, simi-

lar or better performance was observed with respect to predicting clinical 

outcomes, without relying on complex ‘statistical’ models.11,13 Moreover, 

our approach outperformed QRSAREA with respect to clinical outcome, 

whereas unsupervised machine learning of baseline QRS-waveforms 

higher risk
baseline riskbaseline riskbaseline risk

27%17%17%

lower risk

Input median beat ECG of single example patient

FactorECG predictions

Combination of different ECG factors predicts LVAD/HTx/death

LVAD/HTx/death
after 

1 year and 119 days

LVESV response
of 55%

(from 119 to 53 mL)

Real outcome in this patient

baseline 
risk

baseline 
risk

Three-year probability of
LVAD/HTx/death

Probability of being
a non-responder

Higher 
ventricular frequency

Axis deviation
to the right

Decreased P-wave height
with increased duration

More LBTB-like morphology
with increased precordial 

S-wave amplitudes
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previously failed to do so.23 Most importantly, all previously proposed mod-

els require collection and calculation of many clinical variables, which are 

highly operator dependent, cumbersome, and likely to dissuade clinicians 

to rapidly adopt such an approach.11–14 Although significant added benefit 

was obtained upon addition of a clinical model to QRSAREA, the increase in 

model performance was 3-fold smaller for FactorECG. Rather, our proposed 

approach requires only a standard 12-lead ECG, without heavily depending 

on additional clinical input variables, or manual selection of the QRS-com-

plex. It is therefore conceivable that the clinical practicality of our ECG-only 

approach outweighs the limited benefit of increasing the c-statistic by 0.03 

using 13 clinical variables. For research purposes, an online tool has been 

developed where the ECG can be uploaded, and predictions for CRT out-

come can be made (https://crt.ecgx.ai and https://encoder.ecgx.ai).

Echocardiographic and functional response
The proportion of 43% non-responders is in accordance with previous lite-

rature and highlights the need for better patient selection.3,17 In our study, 

a head-to-head comparison of FactorECG and QRSAREA provided similar 

results for the prediction of echocardiographic non-response (c-statistic 

0.69 [95% CI 0.65 – 0.72] and 0.70 [95% CI 0.67 – 0.74], p = 0.12). However, 

next to identifying the electrical substrate on the ECG, characterisation of 

the extent of mechanical impairment is of importance as well, especially 

in patients with ICM. In fact, adding strain-based parameters of mechani-

cal dyssynchrony to QRSAREA improves prediction of 6-month response 

(c-statistic 0.76), and is therefore also likely of added value to FactorECG.3 

Simple multivariate logistic regression models, consisting of only four 

variables, have also shown to be associated with sustained echocardio-

graphic response (c-statistic 0.774), a surrogate marker of stable disea-

se remission.3 None of the described models provided added value to 

predict NYHA improvement, likely because NYHA is non-specific, and its 

assessment is subjective and prone to bias.24

Identifying ECG features beyond the QRS-complex
FactorECG improves upon heatmap-based attempts to make deep le-

arning explainable, as such approaches merely highlight ‘where’ on the 

ECG significant features are detected but provide no information on whi-

ch morphological change explains the prediction.16 Rather, FactorECG al-

lows for ‘quantifiable’ identification of specific ECG features, rendering 

physicians able to evaluate and confirm the clinical rationale of said fe-

atures. This is reflected by our results that confirm the known importan-

ce of LBBB-morphology and QRSAREA for the prediction of echocardio-

graphic response 3,10. Using FactorECG, all types of LV conduction delay, 

as reflected in the QRS-complex, can be represented by combining ECG 

Factors 5, 9, 19, and 27. Interestingly, although QRSAREA was associated 

with outcome, ECG factors that incorporate QRS-duration were not as-

sociated with outcome (Figure 5). This may be because, in the presen-

ce of sufficient electrical substrate, a subset of patients with moderate 

QRS-prolongation are still likely to respond.2,3,5,25 This is also undersco-

red by our results, since FactorECG also predicted outcome in patients 

with QRS-duration < 150 ms (c-statistic 0.72 [0.67-0.76]). Likewise, when 

corrected for various other ECG features, no significant association with 

QRS-duration and outcome remains, as also reported previously.26

Visualisation of ECG factors also identified various other ECG char-

acteristics known to be to be associated with outcome and/or response, 

including the PR-interval and P-wave duration (F8 and F15). The fact that 

correction of atrioventricular dromotropathy increases LV filling and LV 

pump function may explain the increased risk of poor outcome in the 

present study.27 Similarly, prolonged P-wave duration > 120 ms, indicat-

ing interatrial myopathy, has been linked to supraventricular arrhythmias, 

stroke, and mortality.28 In addition, the QRS-T angle29, JTc-interval30, and 

T-wave area31 have been raised as potentially important determinants of 

response or outcome. However, various other subtle markers of ischemia, 

dyssynchrony, or risk of arrhythmia may be represented by FactorECG.

Indeed, when evaluated by itself, a large number of other factors can 

be identified from the ECG.7 Unfortunately, accurately identifying these 

factors, and interpreting their interrelated meaning, is highly complex. In 

the first place because there is lack of consensus7 and inter-observer dis-

agreement8 as to what truly defines LBBB-morphology. Matters are fur-

ther complicated when septal and LV activation patterns are concealed, 

or wrongly mimicked.9 Lastly, various unknown ECG-criteria may have re-
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mained undetected. Interpretation of the LBBB ECG is therefore complex 

and misleading. In this regard, FactorECG allows for a unified and agnos-

tic approach, is user-independent, and inherently explainable. 

Clinical implications
The FactorECG algorithm can be used in every patient that is conside-

red for CRT. When provided with the baseline ECG, the patient-specific 

ECG-factors that are associated with response and outcome are iden-

tified and combined into an individual risk score, and a patient-specific 

visualisation of these factors is given (Figure 6). Hence, assessment of 

the electrical substrate as a “continuum”, rather than the current binary 

classification of LBBB morphology, is achieved. While similar in size, the 

CRT non-response and poor outcome subgroup, as predicted by the Fac-

torECG, performed worse than patients without a class I indication for CRT 

according to the ESC guideline criteria. Importantly, 39% of patients in this 

worst performing subgroup had a class I indication (Figure 2C). Facto-

rECG therefore enables better classification of patient eligibility, without 

compromising the total proportion of patients deemed suitable for CRT 

implantation. 

Future perspectives
Our self-contained ECG-based model was especially effective in fema-

les and the non-ICM population (c-statistic = 0.77 for both), but additional 

clinical variables are required to improve performance in patients with 

ICM. A future study will address the importance of adding strain-based 

mechanical dyssynchrony to FactorECG.3 In addition, optimal placement 

of the LV lead is of importance to enhance response in CRT patients. 

This is particularly important in patients with scar, but also in patients with 

heterogenous LV electrical activation.9 In the future, FactorECG may use 

ECG-derived data to identify the site of latest electrical activation, thereby 

guiding LV lead implantation.9 Moreover, the results need to be validated 

in a patient group that received a CRT-P device, as recent reports have 

shown similar survival between patients with a CRT-P and a CRT-D.32. La-

stly, prospective studies with FactorECG are warranted to acquire CE cer-

tification, allowing its use as a medical device. 

Strengths and limitations
Our data was derived from a large multicentre  database, and thereby 

represents a real-world population. Internal validation by means of bo-

otstrapping was performed, which allows for unbiased validation in the 

complete dataset, and is therefore considered the recommended appro-

ach for internal validation of any prediction model.20,21,32 As a result, perfor-

mance was not assessed in a single train-test split, because this approach 

only validates an example model in an arbitrarily chosen and small data 

subset and produces a poorer model by default.33 We acknowledge that 

external validation in datasets with a different patient population remains 

important to investigate the generalizability of our results. However, by 

using regular prediction models (i.e., logistic regression and Cox regres-

sion) with a limited number of predicting variables as input (only the 21 

factors), the risk of overfitting is low. Although ECG data was derived from 

a single vendor, previous studies have shown that ECG-based deep le-

arning results generalize well to other cohorts with different ECG manu-

facturers.34,35 Despite QRSAREA being calculated manually, performance is 

identical relative to automated calculation.36 Although measurement of 

LVESV is user-dependent, excellent intra- and inter-observer reliability 

was previously demonstrated in a subpopulation of this study.3

Many clinicians regard deep learning as a ‘black box’, which limits 

trust in such algorithms.16 However, our approach to make the model in-

herently explainable may abate this concern, and increase willingness to 

facilitate clinical adoption of the FactorECG. Although an overall c-statistic 

of 0.69 leaves room for improvement, our approach is unique in its clin-

ical practicality, with better risk-stratification than QRSAREA. Addition of a 

few important clinical values might further increase the predictive value 

of FactorECG. Especially use of strain-parameters has shown to be highly 

predictive, also in addition to QRSAREA
3, or when used in machine-learning 

models.12 As a result, no direct comparison with pre-existing scores could 

be performed.11 Conversely, our approach only requires a standard 12 

lead ECG, and no advanced and highly user dependent measurements 

are needed. Lastly, ethnicity and cause of death were not systemically 

gathered, and our results cannot be generalized to patients receiving up-

grade to CRT.
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Conclusion

The FactorECG, an inherently explainable and end-to-end automated 

deep learning model, can accurately predict long-term clinical outcome, 

HF hospitalization, and echocardiographic non-response in patients eligi-

ble for CRT. Moreover, it outperformed contemporary guideline ECG-cri-

teria and QRSAREA with superior discriminative ability. This approach is 

based solely on a standard 12-lead ECG, without heavily relying on addi-

tional clinical parameters, and visualises patient-specific key features as-

sociated with outcome and response. Besides QRS-morphology, T-wave 

amplitude and inversion, ventricular rate, and PR-interval and P-wave du-

ration were identified as important ECG factors. The FactorECG thereby 

facilitates personalised decision making in CRT, while being easy-to-use, 

allowing rapid uptake for everyday clinical practice.
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The electrocardiogram (ECG) was introduced by Willem Einthoven over 

100 years ago and it is still a central tool in clinical medicine. Einthoven 

already predicted in 1912 that there was much more to gain from the te-

chnology when he said that the method of electrocardiography is “still 

a young plant that will continue to bear good fruit”.1 Interpretation of the 

ECG is a complex task, requires extensive training and physicians at all 

levels of training have deficiencies in ECG interpretation.2 Cardiologists 

have the highest accuracy in interpreting ECGs, but still with high inter- 

and intra-rater variability.3,4 Given these difficulties, efforts to computerize 

ECG interpretation started around 1960, but the algorithms have not rea-

ched physician-level accuracy yet. Therefore, all computer-based reports 

should be systematically overread, which places a heavy logistical bur-

den on clinical practice.4,5

With the discovery that deep neural networks (DNNs), a type of ar-

tificial intelligence (AI), can learn to interpret ECGs when trained on big 

datasets, we are now beginning to unleash the full potential of the ECG.6 

Deep neural networks are computer algorithms based on the structure 

and function of the human brain, and consists of many layers of neurons 

that can learn non-linear relationships between patterns in the raw ECG 

by themselves.7 In a sense this is similar to how humans interpret the 

ECG, by recognizing different patterns and combining the findings.8 Hu-

mans usually use some sort of rule-based pathway with different (binary) 

thresholds to determine whether a feature is present or not. To determine 

whether a typical left bundle branch block is present, for example, one 

needs a QRS duration of more than 120ms, QS or rS in V1 and broad 

and slurred R-waves without Q waves laterally.9 DNNs are not limited to 

such pathways or (binary) thresholds and might recognize more complex, 

more subtle and non-linearly interrelated patterns in an ECG. Studies 

have shown that DNNs applied to ECGs can detect a person’s sex, the 

presence of left ventricular dysfunction or arrhythmias not present at the 

time of recording.10–13 When utilized for such tasks, DNNs can probably 

combine (subtle) electrical information beyond which a human can typi-

cally comprehend.

In this thesis, we aimed to bridge the gap between technical AI re-

search and clinical implementation in ECG-AI to bring the algorithms clos-

er to making a real change in clinical practice. In Chapter 1, we described 

several prerequisites for successful development and implementation of 

ECG-AI in clinical practice: ask the right clinical questions, perform rigor-

ous quality control, prevent overfitting, investigate possible bias using ex-

plainability techniques, have measures of uncertainty, and perform proper 

implementation studies. Here, we discuss this thesis by highlighting the 

most important four prerequisites (Figure 1) and four clinical opportunities 

(Figure 2) for ECG-AI.  

Prerequisite one: asking the right clinical questions
Over 1500 ECG-AI algorithms have been proposed in the last few years, 

but over 90% of the developed ECG-AI algorithms never made it into 

clinical practice. This is partly because most ECG-AI algorithms develo-

ped today are based on retrospectively collected data and research que-

stions are often formulated based on the data available instead of the 

relevant medical problem. The most important prerequisite for successful 

implementation of any diagnostic or predictive algorithm, either based 

on traditional statistics or AI, is to make sure it could be solving a relevant 

medical problem. 
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Figure 1.
Four of the 

most important 
prerequisites 

for successful 
implementation of 

artificial intelligence 
for the ECG as 

identified in this 
thesis. 
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To develop algorithms that could really improve patient care, it is essen-

tial to first clearly identify where the algorithm needs to be implemented in 

the clinical workflow.14 Will it be an add-on to improve the current workflow 

or replace a current prediction model? In the latter case, it is of the utmost 

importance to thoroughly investigate the added benefit of the novel algo-

rithm. When only taking studies with a low risk of bias into account, one 

systematic review found no evidence of superior performance of machine 

learning over more classical statistical methods, such as logistic regression, 

for example.15 

Secondly, we need to identify by whom the algorithm will be used in the 

workflow. Where expert knowledge is not available, or by the experts them-

selves? If used by experts on the topic, the algorithm should have added 

benefit over their interpretations. A recent study subjected a state-of-the-art 

AI algorithm to the Fellowship of the Royal College of Radiologists (FRCR) 

examination, and found that the AI only passed 2 of 10 mock exams, while 

young radiologists passed 4 out of 10.16 
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Figure 2.
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promising applications 
of artificial intelligence 
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asymptomatic at 
home, to first contact 
with the general 
practitioner or in the 
hospital for a non-
cardiological reason 
and finally at the 
Cardiology department 
for possible treatment 
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Thirdly, even when an algorithm solves a clear clinical question, has a 

well-defined position in the clinical workflow, and outperforms the currently 

used pathway, one should consider practical barriers for implementation 

from the start. Can the algorithm be fitted into the current software land-

scape? Is the data accessible? Will implementation save money? Who will 

pay for the algorithm? Does implementation lead to an in- or decrease of 

workload for the personnel that needs to apply it?17 

In this thesis, we identified the following four most promising opportuni-

ties for the first successful implementation of ECG-AI in practice: diagnostic 

workflow optimization, screening for unrecognized or rare diseases, deci-

sion support in treatment indications and discovery of novel ECG features 

(Figure 2).

Opportunity one: diagnostic workflow optimization
There are several important challenges in healthcare today, including the 

rising costs in many developed countries, the limited access to care in 

many developing countries and the shortage of qualified medical per-

sonnel. In the Netherlands, more and more news outlets are reporting a 

‘healthcare infarction’ with reduced access to care for many citizens due 

to an imbalance in the number of patients and number of healthcare per-

sonnel. It has been predicted that in 2040 one in every four job positions 

would be in healthcare to maintain the current healthcare model in the 

Netherlands.18 Naturally, one of the first ‘right clinical questions’ for AI in 

ECG analysis is to optimize the diagnostic workflow and keep healthcare 

systems viable.

Especially in non-cardiology departments and pre-hospital care, 

expert knowledge to interpret ECGs might not always be readily avail-

able.2 Given the life-threatening nature of a suspected acute coronary 

syndrome and ventricular arrhythmias, timely ECG interpretation places 

a heavy logistic burden on clinical practice for cardiologists and cardi-

ology residents. In the UMC Utrecht, for example, around 30.000 ECGs 

are made yearly at non-cardiology departments, of which 50% is normal 

and requires no follow-up (unpublished data). Country-wide this would 

accumulate to 600.000 ECGs in hospitals that need to be overread or 

lead to a referral, of which 300.000 are normal. In prehospital care in the 
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Netherlands every year over 200.000 chest pain patients are referred 

from the general practitioner to the emergency room, of which only 21% 

had a final diagnosis of acute coronary syndrome.19 

As we assumed that detailed ECG interpretation will most likely re-

main the task of a cardiologist, we proposed a novel algorithm in Chapter 

2 that only prioritizes which ECGs need referral to a cardiologist.20 The 

DNN algorithm was trained on 300.000 ECGs annotated by physicians 

as part of the regular clinical workflow, and classified ECGs as normal 

(no referral needed), abnormal not acute (overreading within 24 hours) or 

abnormal (sub)acute (fast consultation) with excellent discriminatory per-

formance (c-statistic 0.93 [95% confidence interval (CI) 0.92 – 0.95]) in an 

expert annotated test set. In Chapter 3, we prospectively validated the 

algorithm in a hospital setting and performed a background implementa-

tion study to see whether implementation is safe and efficacious.21 In this 

study we took the full clinical pathway of every patient into account and 

show that no important diagnoses were missed and the number of ECGs 

predicted as acute that did not require follow-up was very limited. Future 

studies are currently being designed to show whether implementation 

of such an algorithm will lead to reduced workload for cardiologists and 

improved time-to-treatment.

One very important aspect to address for algorithms that are being 

used by non-experts (i.e. users that will not always know when the algo-

rithm is wrong), is to make sure the algorithm will inform the user when it 

doesn’t know for sure. DNNs always provide a diagnosis or prediction, 

even if the input is too noisy to interpret or contains an abnormality the al-

gorithm has never seen before. In a real-world setting, clinicians acknowl-

edge when they are uncertain and request additional tests or consult 

colleagues or literature. In Chapter 4, we sought to give DNNs a similar 

opportunity to express their uncertainty by training multiple versions of 

the same algorithm and showing when they disagree.22 While pressure 

testing this new uncertainty measure in a clinical simulation, we showed 

that by thresholding the uncertainty estimates and thereby rejecting un-

certain ECGs we could improve accuracy in the remaining data. Further-

more, we found a strong correlation between estimated uncertainty and 

disagreement between cardiologists.

Next to more generic algorithms, such as a triage algorithm trained 

on physicians ECG annotations, more specific models could be useful for 

specific diagnostic pathways. In the general practice, for example, ECGs 

are mostly acquired for the diagnosis of heart failure, next to detecting 

rhythm disorders and coronary artery disease. Current guidelines advice 

an ECG, alongside history taking, physical examination and B-type natri-

uretic peptide (BNP) measurements, for determining which patients need 

follow-up and echocardiography.23 Unfortunately, this approach leads to 

high numbers of both underdiagnosis (patients with unrecognized heart 

failure, around 15-20% in an elderly general population with shortness 

of breath) and overdiagnosis (patients referred for echocardiography but 

without heart failure, probably between 40 and 80%).24–28 One possible 

reason could be that only the subjective finding of an ‘abnormal ECG’ is 

used in most diagnostic decision rules, and that performance of general 

practitioners in interpreting ECGs for heart failure is suboptimal, with a 

mean sensitivity of 53-63% and specificity of 63-73%.24,26,28 

In Chapter 5, we described an algorithm that is able to predict left 

ventricular systolic dysfunction (LVSD, here defined as ejection fraction 

<40%) with a c-statistic of 0.89 [95% CI 0.89 – 0.91], sensitivity of 89% and 

specificity of 70%.13 Such an algorithm could be of great use in a decision 

rule to determine which patients to refer for echocardiography, but many 

research steps remain before implementation is possible. Other reasons 

that warrant referral for echocardiography include heart failure with pre-

served ejection fraction and valvular disorders, and although studies have 

shown value of ECG-AI in detecting those, a composite model that is truly 

able to rule-out any relevant echocardiogram abnormality should be de-

veloped.29–31 Moreover, the value of such models in combination with oth-

er predictors, such as BNP measurements, should be investigated first.32

Future studies should elucidate whether broad models, such as the tri-

age algorithm, or more specific models, such as an algorithm specifically 

trained to detect left ventricular systolic dysfunction, aortic stenosis or oc-

cluding myocardial infarction, have most value in optimizing and reorganiz-

ing clinical workflows. Currently, several groups around the world are investi-

gating this, and multiple clinical trials are underway to show whether ECG-AI 

could really lead to a more efficient use of our healthcare resources.33
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Opportunity two: screening for unrecognized and 
rare disease
In addition to optimizing the current clinical diagnostic workflow, scree-

ning for unrecognized and rare disease in possibly asymptomatic patien-

ts is a second major opportunity for ECG-AI. Other groups have shown 

feasibility for detecting silent atrial fibrillation, dilated and hypertrophic 

cardiomyopathy, valvular disease and long QT syndrome using ECG-

AI.12,30,31,34–36 In this thesis, next to the algorithm for reduced left ventricular 

ejection fraction, we have developed one other algorithm that could be 

useful for screening purposes.

In Chapter 7, we proposed a DNN developed on median beat ECGs 

of 86 phospholamban (PLN) p.Arg14del variant carriers to distinguish 

them from age and sex-matched controls.37 This algorithm performed well 

with a c-statistic of 0.95 [95% CI 0.91-0.99] and sensitivity and specificity 

of 0.82 and 0.93, respectively. The PLN p.Arg14del genetic variant orig-

inates from an ancient Dutch founder and its prevalence in the Nether-

lands is estimated to be around 1:500-1000. It has also been identified in 

several other countries including Spain, Greece, Vietnam, China, Japan, 

Canada, and the United States.38–40 As the typical ECG characteristics of 

PLN p.Arg14del variant carriers are largely unknown in many parts of the 

world, such a screening algorithm could be of great use to determine 

which patients need genetic testing. The current analysis is limited by its 

case-control design, however, and future studies validating the model in 

relevant populations with a more realistic prevalence are necessary.

 While the algorithms proposed for optimizing the diagnostic 

workflow above should lead to reduced workload for the healthcare sys-

tem, algorithms proposed for screening of unrecognized disease could 

lead to a dramatic increase. Especially screening for asymptomatic LVSD 

or silent atrial fibrillation could lead to a short-term burden on healthcare, 

and future studies should focus on the implications of implementation of 

such algorithms, including health technology assessments. One random-

ized controlled trial was performed where an ECG-AI algorithm for detec-

tion of LVSD was available in primary care. In this study, the proportion of 

patients that underwent echocardiography (19%) did not increase in the 

intervention group, which is a first reassuring finding.41 In other trials, how-

ever, where screening for LVSD using Apple Watch ECGs or screening for 

silent AF was performed, implementation of ECG-AI would lead to referral 

in 50% to 65% of patients.42,43

Prerequisites two and three: explainability and appli-
cability to small data
As shown above, DNNs excel when applied to very large datasets of raw 

unstructured data, such as manually annotated ECGs or ECGs linked to 

echocardiograms. The algorithms are considered ‘black boxes’, howe-

ver. They cannot provide meaningful information about the logic behind 

their decisions, which is warranted by the European Unions General 

Data Protection Regulation laws.44 It has therefore been argued that all 

AI systems should be explainable to their clinical users.45 On the other 

hand, if the accuracy of an algorithm is shown in robust validation and 

implementation studies across relevant (marginalized) subgroups, the 

need for explainability remains questionable for most use cases of ECG-

AI.46 The current medical system is already well adapted to ‘black boxes’ 

and many drugs and devices function as such. The mechanism of action 

of paracetamol, for example, is only partially understood, but we know 

it is a safe and effective pain medication due to numerous randomized 

controlled trials (RCTs).47 RCTs have been the standard way to evaluate 

medical interventions, and this should not be different for AI algorithms.48 

Although explainable AI techniques are thus probably not a prerequisite 

when using ECG-AI systems in clinical practice, they are a prerequisite 

in the development of such algorithms for detection of bias novel ECG 

features, possibly improving our understanding of pathophysiology and 

increasing trust in ECG-AI.6,46 In dermatology, for example, heatmaps were 

used to discover that an AI erroneously focused on surgical skin markings 

to detect skin cancer.49

Most research on explainable AI for the ECG uses heatmap-based 

techniques to detect what parts of the ECG the algorithm bases its 

decision on. As we argue in Chapter 6, however, currently used heat-

map-based methods are uninformative, unreliable, and prone to confir-

mation bias.50 These methods highlight a broad area on the individual 

ECG to show where the algorithm focuses on, but that does not give any 
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insight into what the model is doing with that area. Moreover, you can 

pick many different examples and heatmap methods, with each a differ-

ent explanation. This poses the risk of confirmation bias, as Cynthia Rudin 

explains: “You could have many explanations for what a complex model 

is doing. Do you just pick the one you ‘want’ to be correct?”51 Moreover, 

it remains debatable if such explainability techniques will ever provide 

accurate explanations, as it is contradictory to first train a highly complex 

algorithm, and then try to explain this using a very simple heatmap.

Given these shortcomings of current explainability techniques, we 

sought to develop a novel approach for explainable ECG-AI in Chapter 5. 

Here, we decouple feature discovery from classification in DNNs by using 

a variational auto-encoder (VAE) to first decompose the ECG into its gen-

erative principal components (the FactorECG).13,52 The VAE was trained 

on over 1 million ECGs to learn these 32 ECG factors by itself. Using ex-

tensive visualizations and association analyses, we show that many fac-

tors represent known ECG morphology, while others do not correlate to 

any human-named feature and possibly represent novel features (https://

decoder.ecgx.ai, Figure 3). As the ECG factors are subsequently used 

in interpretable prediction models, such as logistic regression, we can 

directly link changes in ECG morphology to decisions of the algorithm. In 

current analysis, for example, we showed that inferolateral ST elevation 

is associated with LVSD, which illustrates that the algorithm might also 

pick up myocardial dysfunction due to acute ischemia. This could severe-

ly hamper the generalizability of the model for screening purposes in the 

general population and is one of the reasons why explainable models 

are imperative. Next to the improved explainability, the VAE also performs 

enormous dimensionality reduction to only 32 factors (from 7200 data 

points in the 12-lead median beat ECG), which broadens the usability of 

DNNs to much smaller labeled datasets than before.

While the FactorECG provides an important advance towards using 

AI for ECG feature discovery in smaller datasets, there are still several im-

provements warranted. Firstly, the ability of the VAE to compress the ECG 

into its 32 factors is not perfect, and the correlation between input and 

reconstructed ECG is 0.86. This means subtle or high-frequency com-

ponents, such as pacing spikes or the R-wave height, and rare ECG vari-

Figure 3.
Example of 

explanation by 
the FactorECG for 

prediction of an 
ejection fraction 

below 40%.
By adjusting the 

different factors, we 
can visualize which 

ECG morphology 
is associated with 
the prediction. In 

this example, a high 
value in factor 5 

(inferolateral negative 
T-waves) and in factor 

8 (increased PR-
interval and P-wave 
duration) leads to a 

very high probability 
of left ventricular 

systolic dysfunction. 
This tool is accessible 

via https://decoder.
ecgx.ai and also 

allows for upload of 
ECGs in a research 

setting.

ations, such as ventricular tachycardia, are sometimes poorly encoded 

and further technological advances are needed to provide more lossless 

reconstructions. A novel approach (the FactorECG 2.0) is currently un-

der active development.53 Furthermore, additional insight into the (patho)

physiological mechanism behind the different ECG factors is needed by 

associating them with other structural parameters (such as from echocar-

diography) or genetics. Finally, we hope to encourage other groups to 

also apply the FactorECG to their ECG data and independent validate our 

results or expand the applicability to new datasets (an online tool to con-

vert a batch of ECGs is available through https://encoder.ecgx.ai). 

Opportunity three: decision support in treatment in-
dications and planning
As the FactorECG can use what it learned on over a million ECGs in 

much smaller datasets, one new field where ECG-AI may provide be-

nefit in current clinical practice could be in supporting decision making 

for treatment indications. The ECG plays or could play an important role 

for decision-making in many treatments in Cardiology, such as the de-

cision to implant an implantable cardioverter defibrillator (ICD) or car-

diac resynchronization therapy (CRT) device and to perform a cardiac 

ablation procedure.6 It could also provide improved localization of pre-
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mature ventricular complexes or the location of the accessory pathway 

in Wolff-Parkinson-White patients, which could help in optimizing tre-

atment planning.54–56 For most of these treatments, the indications or 

procedure planning depends on manually derived ECG parameters that 

are too simplistic, such as the number of negative T-waves, or remain 

difficult to standardize, such as the definitions of typical left bundle bran-

ch block.57–59 In this thesis, we developed three algorithms to assist in 

treatment decision support by using the power of the FactorECG. This 

is a very timely subject, as these devices and procedures are expensive 

and better selection could lead to reduced healthcare expenditure.

In Chapter 8, we used the pretrained FactorECG model from Chap-

ter 5 to predict the risk of malignant ventricular arrhythmia (MVA) in PLN 

p.Arg14del variant carriers with an optimism-corrected c-statistic 0.79 

[95% CI 0.75 – 0.85] using only 12-lead ECG data. Addition of echocar-

diographic and Holter monitoring data in the group with high predicted 

risk based on the ECG improved predictive ability further, resulting in 

a positive predictive value (PPV) of 18% and negative predictive value 

(NPV) of 99%, outperforming the use of the currently used multimod-

al model. We compared the model to an approach using convention-

al ECG parameters, such as the number of negative T-waves and the 

presence of low QRS voltage and show that it greatly outperforms such 

model. Clinically, such an ECG-only model can be used in a two-step 

approach involving a first pass using the ECG model alone, followed by 

additional diagnostics in subjects deemed at-risk of MVA to determine 

which patients should receive and ICD implantation. As acceptable 

NPVs can be achieved with only ECG at home or via the general prac-

titioner in a large subgroup, the health care burden of PLN monitoring 

visits could be reduced, lowering the burden on asymptomatic carriers 

significantly as well. 

In Chapter 9, we utilized the same approach to predict MVA in a 

broader group of patients with dilated cardiomyopathy using only ECG 

data.60 In contrast to the PLN population, in DCM patients there are no 

clear ECG criteria for deciding on ICD implantation and only the LVEF 

cut-off of 35% is used in this group. Although this cut-off showed no 

predictive value for the risk of MVA in this population, the deep learn-

ing-based approach reached a c-statistic of 0.67 [95% CI 0.62 – 0.72] in 

a Cox regression model. This model performed slightly worse than the 

model in PLN p.Arg14del variant carriers, most likely due to the fact that 

it is a much more diverse group of patients with more diverse and subtle 

ECG abnormalities.

In Chapter 10, we developed and validated the FactorECG meth-

odology again to predict echocardiographic response and clinical out-

comes after CRT implantation.61 For the first time, deep learning has 

been used to predict clinical outcome after CRT using only the raw 

preprocedural ECG (c-statistic 0.69 [95% CI 0.66-0.72]). The algorithm 

outperformed contemporary guideline criteria and vectorcardiographic 

QRSAREA for stratifying which patients would benefit from CRT implan-

tation, without compromising the total proportion of patients deemed 

suitable for CRT implantation. One of the major advantages is the re-

producible, user-independent and consisted analysis of the 12-lead 

ECG morphology, in contrast to manually defining which patients have a 

typical left bundle branch block (which suffers from high inter-observer 

disagreement and lack of consensus)62

In the future, the FactorECG can be applied to many more disease 

groups and treatments. Currently, our group is developing algorithms 

to determine the need for ICD therapy in other disease groups, such 

as hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy.

Opportunity four: discovery of novel ECG features 
Finally, one opportunity of explainable AI is to use DNNs as a ‘feature 

detector’ for diseases where the ECG features might not be known. 

If one wants to discover which ECG features are associated with a 

specific, possible novel or rare disease, manual interpretation of large 

numbers of ECGs using prespecified criteria is needed. This might not 

always be feasible, and restricts the possible features found to the 

prespecified ones. We assumed that DNNs could be used to learn 

those features in an agnostic way and might provide insight into which 

ECG morphology is diagnostic or predictive.

For DNNs to be used as a ‘feature detector’, some kind of explain-

ability was needed. In Chapters 2 and 7, we employed heatmap-based 
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methods, such as Guided Grad-CAM to determine which segments of 

the median beat ECG were of interest to the algorithm. These methods 

only work on individual ECGs, and in Chapter 2 we were therefore 

only able to validate this methodology by looking at some examples.20 

In Chapter 7, we expanded on this method by providing an overall 

heatmap of the whole dataset, by taking the mean of all time-aligned 

individual heatmaps.37 Using such analysis, we were able to show that 

the DNN looked at similar ECG segment to detect PLN p.Arg14del vari-

ant carriers as a cardiologist would, but was able to bring a new focus 

on which detailed features were the most distinctive (R and T-wave 

attenuation in V2 and V3 and increased PR-duration). The limitations of 

heatmap-based methods, as described above and in Chapters 5 and 

6, emerged during the analysis, we used the FactorECG in Chapters 

8, 9 and 10 as the ‘feature detector’.

In Chapter 8, where the FactorECG was used to predict MVA in 

PLN p.Arg14del variant carriers, we found that ECG factors 1 and 5 

predicted MVA and represented known ECG features (reduced QRS 

voltage and inferolateral symmetrical negative T-waves). Interestingly, 

it used these features as a continuous spectrum and already predicts 

a high risk before the appearance of negative T-waves, but only with 

a reduced R- and T-wave height. This might explain why the model 

outperforms manual ECG interpretation, as this uses binary cut-off 

points for QRS voltage and negative T-waves. In Chapter 9, we predict 

MVA in the broader group of DCM patients, where we did the surpris-

ing finding that factors associated to the P-wave are most predictive 

(factor 8 and 27). While factor 8 is also predictive in PLN p.Arg14del 

variant carriers to a lesser extent, it is probably a better marker in a 

heterogeneous group of DCM patients.63 In Chapter 10, we used the 

FactorECG to predict response to CRT and found that many factors 

outside of the QRS complex are associated. We are currently inves-

tigating what these factors represent physiologically. Future studies 

could apply the FactorECG approach to detect novel ECG features in 

other diseases groups, such as other cardiomyopathies and idiopathic 

ventricular fibrillation. 

Prerequisite four: real validation using randomized 
trials of the embedding in the clinical workflow
As described, research from our and other groups has shown that 

AI applied to the ECG could be very useful in clinical practice, when 

asking the right questions to the algorithm. Currently, the performance 

of ECG-AI is mostly supported by retrospective or preliminary imple-

mentation studies.6,33,48 We are at the forefront for real-world testing of 

the clinical benefits of ECG-AI, and the coming years should focus on 

large-scale randomized trials and other implementation studies. Such 

studies should especially focus on performance in subgroups and 

other ECG devices. Before this is possible, however, we need a softwa-

re environment that seamlessly embeds ECG-AI in the workflow of the 

clinician, from general practitioner to electrophysiologist. Such a pla-

tform should be developed together with AI specialists, hybrid physi-

cians (i.e. with technical and medical background), other clinicians and 

the IT department of the hospital. Ideally, it would be vendor-neutral 

(i.e. working with every ECG data source, from single-lead Apple Watch 

ECGs to 12-lead 10 second and 30 day ECGs) and modular (i.e. easily 

expandable with new algorithms). Its interface should provide results 

in a safe and intuitive way for the clinician who has no experience with 

AI. This could, for example, be performed by providing a ‘model facts’ 

label.64 An example of such a platform, as currently being developed in 

the UMC Utrecht, is shown in Figure 4.  
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Conclusion

In conclusion, during this project much progress is made in ticking 

the boxes of prerequisites for the successful implementation of ECG-AI 

in clinical practice. We show promising results of ECG-AI in screening for 

unrecognized disease, diagnostic workflow optimization, decision support 

in treatment planning and detection of novel ECG features. Major chal-

lenges remain improvements to the FactorECG algorithm, the need for 

large-scale randomized controlled trials and implementation studies and 

the development of software platforms to integrate algorithms in the clin-

ical workflow. Importantly, future studies should elucidate whether imple-

mentation of ECG-AI leads to improved patient outcomes and a reduced 

financial and logistical burden on healthcare. 

Figure 4.
Dashboard and 

platform for 
implementation of 

artificial intelligence 
algorithms of 

12-lead 10 second 
electrocardiograms 

in the clinical 
hospital workflow 

that is currently 
under development 
in the UMC Utrecht.
This is a screenshot 

from a demo patient, 
where the triage 

algorithm predicts 
an abnormal 

ECG, but without 
findings that warrant 
immediate attention. 

The reduced 
ejection fraction 

(EF) algorithm, 
however, detects 
a high chance for 

this patient having 
reduced EF. 
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English summary

The 12-lead electrocardiogram (ECG) is a widely used diagnostic tool in 

clinical practice, playing a pivotal role in identifying a range of cardiac ab-

normalities. However, accurately interpreting the ECG remains a complex 

task with significant inter- and intra-rater variability, and access to expert 

knowledge is not universally available. These challenges have instigated 

the introduction of algorithms for the computerized interpretation of the 

ECG (CIE). Current versions have, however, not been able to reach physi-

cian level accuracy. A substantial improvement of CIE is forthcoming with 

the discovery that one specific type of artificial intelligence (AI) algorithm, 

called deep neural network (DNN), might be highly effective in the proces-

sing of raw data without the need for hand-crafted or rule-based feature 

engineering. The abundance of labeled ECG datasets makes the ECG an 

ideal substrate for developing deep learning-based AI algorithms.

In this thesis, we aimed to bridge the gap between technical AI re-

search and clinical implementation and bring these algorithms closer to 

effecting real change in clinical practice. Chapter 1 outlines four prereq-

uisites for successful development and implementation of ECG-AI: asking 

the right clinical questions, ensuring rigorous quality control, addressing 

potential bias using explainability techniques, and conducting proper im-

plementation studies. Furthermore, we identified four opportunities for 

ECG-AI applications: screening for unrecognized diseases, optimizing di-

agnostic workflows, providing decision support in treatment planning, and 

detecting novel ECG features.

As a first step in exploring the value of DNNs for ECG interpretation, we 

developed a deep learning algorithm in Chapter 2 to optimize the diag-

nostic ECG workflow. This algorithm accurately triages ECGs from normal 

to acute, determining which cases require expert consultation and within 

what timeframe. Subsequently, in our pursuit of clinically applicable AI for 

the ECG, we conducted an implementation study with the triage algorithm 

in a hospital setting, demonstrating its safety and efficacy in terms of clini-

cal outcomes (Chapter 3).

To address one of the prerequisites for successful implementation 

of ECG-AI, we investigated whether these algorithms could express un-

certainty in Chapter 4. Addressing this aspect is crucial, as DNNs always 

provide a diagnosis or prediction, even when the input data is noisy or 

contains abnormalities the algorithm has not encountered before. We 

proposed a method to quantify the algorithm’s certainty in its predictions, 

serving as a safeguard to determine which ECGs should undergo auto-

matic analysis and which should be referred to an expert.

In addition to addressing the estimation of uncertainty, we encoun-

tered two other challenges while using deep neural networks (DNN) – 

the lack of explainability and the requirement for extensive datasets. To 

overcome these hurdles, we developed a novel method harnessing the 

power of DNN to interpret ECGs in an explainable manner. By training a 

variational auto-encoder on 1.1 million median beat ECGs, we successfully 

decomposed the ECG morphology into 32 explainable factors, which we 

refer to as the FactorECG (Chapter 5). Our findings demonstrated that this 

explainable approach not only performs as effectively as the conventional 

‘black box’ DNNs for ECG interpretation but also shows promise in novel 

applications, such as detecting reduced ejection fraction. Furthermore, in 

Chapter 6, we discussed why the FactorECG method offers improved ex-

plainability compared to the heatmap-based techniques previously used.

As datasets with thousands of ECGs are not available for many clinically 

relevant questions, we evaluated the feasibility to transfer the knowledge 

that DNNs learned on big data to small data. In Chapter 7, we developed 

a deep learning algorithm to detect phospholamban (PLN) p.Arg14del vari-

ant carriers and used conventional heatmaps to visualize which features 

were used by the algorithm. Afterwards, we applied our novel explainable 

method, the FactorECG, to predict which PLN p.Arg14del variant carriers 

develop malignant ventricular arrhythmia (Chapter 8). We also applied 

the method in patients with dilated cardiomyopathy to predict ventricular 

arrhythmias (Chapter 9) and in patients that received cardiac resynchro-

nization therapy to predict response to treatment and mortality (Chapter 

10). Remarkably, both algorithms outperformed currently used prediction 
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models while requiring only the 12-lead ECG as input.

Finally, in Chapter 11, we reflect on the progress made regarding the 

prerequisites and opportunities of ECG-AI. While we have achieved prom-

ising results for all identified opportunities and unveiled numerous future 

possibilities, significant challenges persist before the successful implemen-

tation of ECG-AI in clinical practice can become a reality. These challenges 

encompass refining the FactorECG algorithm, conducting large-scale ran-

domized controlled trials and implementation studies, and developing soft-

ware platforms to seamlessly integrate algorithms into the clinical workflow. 

Importantly, future studies must investigate whether the implementation of 

ECG-AI leads to improved patient outcomes and the necessary reduction in 

financial and logistical burdens on healthcare systems.

Nederlandse samenvatting

Het 12-afleidingen elektrocardiogram (ECG) is een veelgebruikt diagno-

stisch instrument in de klinische praktijk en speelt een cruciale rol bij het 

identificeren van diverse cardiale afwijkingen. Het nauwkeurig interpre-

teren van het ECG blijft een complexe taak met aanzienlijke variabiliteit 

tussen verschillende waarnemers. Bovendien zijn experts om het ECG te 

interpreteren niet overal beschikbaar. Deze uitdagingen hebben geleid 

tot de introductie van algoritmen voor de geautomatiseerde interpreta-

tie van het ECG. Huidige versies hebben echter nog niet het niveau van 

nauwkeurigheid bereikt dat vergelijkbaar is met dat van een cardioloog. 

Een aanzienlijke verbetering van deze algoritmen is echter te verwachten 

door de ontdekking dat een specifiek type artificieel intelligentie (AI) al-

goritme, genaamd diep neuraal netwerk (DNN), zeer effectief kan zijn in 

het verwerken van ruwe gegevens zonder de noodzaak van handmatig 

gecreëerde of rule-based signaaleigenschappen. De overvloed aan ge-

labelde ECG-datasets maakt het ECG een ideaal substraat voor de on-

twikkeling van zulke deep learning gebaseerde AI.

In dit proefschrift hebben we als doel gesteld om de kloof te overbrug-

gen tussen technisch AI onderzoek en klinische implementatie van ECG-AI 

algoritmen om deze algoritmen dichter bij een daadwerkelijke verandering 

in de klinische praktijk te brengen. Hoofdstuk 1 schetst vier voorwaarden 

voor een succesvolle implementatie van ECG-AI: het vaststellen van de 

relevante klinische vraagstukken, het waarborgen van strenge kwaliteits-

controle, het aanpakken van mogelijke vooringenomenheid met behulp 

van explainability en het uitvoeren van degelijke implementatiestudies. 

Bovendien hebben we de vier meest kansrijke toepassingen voor ECG-AI 

geïdentificeerd: screening van nog niet vastgestelde ziekten, optimalisatie 

van diagnostische workflows, het bieden van ondersteuning bij het kiezen 

van de juiste behandeling en het detecteren van nieuwe ECG-kenmerken.

Als eerste stap in het verkennen van de waarde van DNN’s voor ECG-in-
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terpretatie hebben we in Hoofdstuk 2 een deep learning algoritme ontwik-

keld om de diagnostische workflow te optimaliseren. Dit triage algoritme 

kan ECG’s nauwkeurig classificeren van normaal tot acuut, waarbij wordt 

bepaald welke gevallen een consult van de cardioloog vereisen en bin-

nen welk tijdsbestek. Vervolgens hebben we in ons streven naar klinisch 

toepasbare AI voor het ECG een implementatiestudie uitgevoerd met 

het triage-algoritme in een ziekenhuisomgeving, waarbij de veiligheid en 

werkzaamheid ervan werden aangetoond in termen van klinische uitkom-

sten (Hoofdstuk 3).

Een tweede voorwaarde voor succesvolle implementatie van ECG-AI, 

strenge kwaliteitscontrole, werd in Hoofdstuk 4 onderzocht. Daar bestu-

deren we of ECG-AI-algoritmen onzekerheid kunnen uitdrukken. Dit is een 

cruciaal aspect, omdat DNN’s altijd een diagnose of voorspelling geven, 

zelfs wanneer het ECG van slechte kwaliteit is of afwijkingen bevat die het 

algoritme niet eerder heeft gezien. We hebben een methode ontwikkeld 

om de mate van zekerheid van het algoritme in zijn voorspellingen te kwan-

tificeren, als een drempelwaarde om te bepalen welke ECG’s automatisch 

mogen worden geanalyseerd en welke altijd aan een cardioloog moeten 

worden voorgelegd.

Naast het schatten van onzekerheid, kwamen we twee andere uitdagin-

gen naar voren: het gebrek aan explainability en de vereiste van zeer grote 

datasets. Om deze obstakels te overwinnen, hebben we een nieuwe meth-

ode ontwikkeld om de kracht van DNN’s te benutten bij het interpreteren 

van ECG’s op een explainable manier. Door een variational auto-encoder te 

trainen op 1,1 miljoen median beat ECG’s, waren we in staat om de ECG-mor-

fologie te ontleden in 32 factoren, die we het FactorECG noemen (Hoofd-

stuk 5). Onze bevindingen toonden aan dat deze verklaarbare aanpak niet 

alleen even effectief presteert als de conventionele ‘black box’ DNN’s voor 

ECG-interpretatie, maar ook veelbelovend is voor nieuwe toepassingen, 

zoals het detecteren van een verminderde ejectiefractie op basis van enkel 

het ECG. Bovendien hebben we in Hoofdstuk 6 besproken waarom de 

FactorECG-methode verbeterde explainability biedt in vergelijking met de 

eerder gebruikte heatmap-technieken.

Aangezien datasets met duizenden ECG’s niet beschikbaar zijn voor 

veel klinisch relevante vragen, hebben we in Hoofdstuk 7 geëvalueerd of 

we de kennis die DNN’s hebben opgedaan uit zeer grote datasets, kon-

den overdragen naar kleine datasets. We hebben een DNN ontwikkeld om 

dragers van de phospholamban (PLN) p.Arg14del-variant op te sporen en 

hebben conventionele heatmaps gebruikt om te visualiseren welke ken-

merken door het algoritme werden gebruikt. Vervolgens hebben we onze 

nieuwe explainable methode, het FactorECG, toegepast om te voorspellen 

welke dragers van de PLN p.Arg14del-variant een kwaadaardige ventricu-

laire aritmie gaan ontwikkelen (Hoofdstuk 8). We hebben de methode ook 

toegepast op patiënten met gedilateerde cardiomyopathie om ventricu-

laire aritmieën te voorspellen (Hoofdstuk 9) en op patiënten die cardiale 

resynchronisatietherapie kregen om de respons op behandeling en sterfte 

te voorspellen (Hoofdstuk 10). Opmerkelijk genoeg presteerden beide al-

goritmen beter dan momenteel gebruikte voorspellingsmodellen, terwijl ze 

alleen het 12-afleidingen ECG als invoer nodig hadden.

Tot slot reflecteren we in Hoofdstuk 11 op de vooruitgang die is geb-

oekt met betrekking tot de mogelijkheden en voorwaarden van ECG-AI. 

Hoewel we veelbelovende resultaten hebben behaald voor alle geïdenti-

ficeerde toepassingen en talrijke toekomstige mogelijkheden hebben bes-

chreven, blijven er aanzienlijke uitdagingen bestaan voordat de succesvolle 

implementatie van ECG-AI in de klinische praktijk werkelijkheid kan worden. 

Deze uitdagingen omvatten het verfijnen van het FactorECG-algoritme, het 

uitvoeren van grootschalige randomized controlled trials en implementatie-

studies en het ontwikkelen van softwareplatforms om algoritmen naadloos 

te integreren in de klinische workflow. Belangrijk is dat toekomstige studies 

onderzoeken of de implementatie van ECG-AI leidt tot betere uitkomsten 

voor patiënten en tot de benodigde vermindering van de financiële en lo-

gistieke last voor de gezondheidszorg.
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